Lukáš Kalina
Brno University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lukáš Kalina.
Cellulose | 2015
Pavel Bazant; Ivo Kuritka; Lukas Munster; Lukáš Kalina
The synthesis of hybrid silver/zinc oxide (Ag/ZnO) decoration on the cellulose surface is described. The structures were characterized with X-ray photoelectron spectroscopy (XPS) and corroborated with X-ray diffraction and scanning electron microscopy. Silver nitrate and zinc acetate dihydrate were used as soluble raw materials. Hexamethylenetetraamine was used as the precipitating and reducing agent. The surface of α-cellulose was always treated by hydrogen peroxide before synthesis with a relatively mild effect manifested in water contact angle measurement and XPS high-resolution spectra. The Ag/ZnO decoration system was identified as a true nanodispersed metal/semiconductor hybrid with a unique collective plasmonic structure observed on Ag 3d core lines for the first time. A series of experiments with a single precursor solution contributed to the characterization of the interaction of Ag+ and Zn2+ species with the surface and to the description of the reaction mechanism in the mixed precursor solution. In contrast to previous reports, a specific interaction between the cellulose substrate and Zn2+ was observed. No specific non-thermal effects of microwave heating were observed.
Nanotechnology | 2014
Pavel Procházka; Jindřich Mach; Dominik Bischoff; Zuzana Lišková; Petr Dvořák; Marek Vaňatka; Pauline Simonet; Anastasia Varlet; Dušan Hemzal; Martin Petrenec; Lukáš Kalina; Miroslav Bartošík; Klaus Ensslin; Peter Varga; Jan Čechal; Tomáš Šikola
Synthesis of graphene by chemical vapor deposition is a promising route for manufacturing large-scale high-quality graphene for electronic applications. The quality of the employed substrates plays a crucial role, since the surface roughness and defects alter the graphene growth and cause difficulties in the subsequent graphene transfer. Here, we report on ultrasmooth high-purity copper foils prepared by sputter deposition of Cu thin film on a SiO2/Si template, and the subsequent peeling off of the metallic layer from the template. The surface displays a low level of oxidation and contamination, and the roughness of the foil surface is generally defined by the template, and was below 0.6 nm even on a large scale. The roughness and grain size increase occurred during both the annealing of the foils, and catalytic growth of graphene from methane (≈1000 °C), but on the large scale still remained far below the roughness typical for commercial foils. The micro-Raman spectroscopy and transport measurements proved the high quality of graphene grown on such foils, and the room temperature mobility of the graphene grown on the template stripped foil was three times higher compared to that of one grown on the commercial copper foil. The presented high-quality copper foils are expected to provide large-area substrates for the production of graphene suitable for electronic applications.
Materials | 2016
Radoslav Novotný; Jakub Tkacz; Vlastimil Bílek; Lukáš Kalina; Ladislav Pařízek
Significant drying shrinkage is one of the main limitations for the wider utilization of alkali-activated slag (AAS). Few previous works revealed that it is possible to reduce AAS drying shrinkage by the use of shrinkage-reducing admixtures (SRAs). However, these studies were mainly focused on SRA based on polypropylene glycol, while as it is shown in this paper, the behavior of SRA based on 2-methyl-2,4-pentanediol can be significantly different. While 0.25% and 0.50% had only a minor effect on the AAS properties, 1.0% of this SRA reduced the drying shrinkage of waterglass-activated slag mortar by more than 80%, but it greatly reduced early strengths simultaneously. This feature was further studied by isothermal calorimetry, mercury intrusion porosimetry (MIP) and scanning electron microscopy (SEM). Calorimetric experiments showed that 1% of SRA modified the second peak of the pre-induction period and delayed the maximum of the main hydration peak by several days, which corresponds well with observed strength development as well as with the MIP and SEM results. These observations proved the certain incompatibility of SRA with the studied AAS system, because the drying shrinkage reduction was induced by the strong retardation of hydration, resulting in a coarsening of the pore structure rather than the proper function of the SRA.
Materials | 2016
Jan Koplík; Lukáš Kalina; Jiří Másilko; František Šoukal
The fixation of heavy metals (Ba, Cu, Pb) in an alkali-activated matrix was investigated. The matrix consisted of fly ash and blast furnace slag (BFS). The mixture of NaOH and Na-silicate was used as alkaline activator. Three analytical techniques were used to describe the fixation of heavy metals—X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), and X-ray powder diffraction (XRD). All heavy metals formed insoluble salts after alkaline activation. Ba was fixed as BaSO4, and only this product was crystalline. EDS mapping showed that Ba was cumulated in some regions and formed clusters. Pb was present in the form of Pb(OH)2 and was dispersed throughout the matrix on the edges of BFS grains. Cu was fixed as Cu(OH)2 and also was cumulated in some regions and formed clusters. Cu was present in two different chemical states; apart from Cu(OH)2, a Cu–O bond was also identified.
Materials | 2016
Lukáš Kalina; Vlastimil Bílek; Radoslav Novotný; Miroslava Mončeková; Jiří Másilko; Jan Koplík
In recent years, the utilization of different non-traditional cements and composites has been increasing. Alkali-activated cementitious materials, especially those based on the alkali activation of blast furnace slag, have considerable potential for utilization in the building industry. However, alkali-slag cements exhibit very rapid setting times, which are too short in some circumstances, and these materials cannot be used for some applications. Therefore, it is necessary to find a suitable retarding admixture. It was shown that the sodium phosphate additive has a strong effect on the heat evolution during alkali activation and effectively retards the hydration reaction of alkali-activated blast furnace slag. The aim of the work is the suggestion of a reaction mechanism of retardation mainly based on Raman and X‑ray photoelectron spectroscopy.
Journal of Analytical Atomic Spectrometry | 2014
Tomáš Kratochvíl; Tomáš Černohorský; Petr Knotek; Lukáš Kalina; Jakub Návesník; Miloslav Pouzar; Magdalena Zvolská
This work deals with the use of laser-induced breakdown spectroscopy (LIBS) for determining the surface density of titanium in ultrathin layers, particularly in ultrathin layers on a steel sheet. The results obtained by LIBS spectroscopy were compared with those obtained by wavelength dispersive X-ray fluorescence spectroscopy (WDXRF), X-ray photoelectron spectroscopy (XPS) and laser ablation inductively coupled plasma time of flight mass spectrometry (LA-ICP-TOF-MS). A simple, cheap and efficient method for the determination of the surface density of titanium in thin layers has been developed.
Ultrasonics Sonochemistry | 2018
Raghvendra Singh Yadav; Ivo Kuřitka; Jarmila Vilcakova; Jaromir Havlica; Lukáš Kalina; Pavel Urbánek; Michal Machovsky; David Škoda; Milan Masař; Martin Holek
In this work, a facile and green method for gadolinium doped cobalt ferrite (CoFe2-xGdxO4; x=0.00, 0.05, 0.10, 0.15, 0.20) nanoparticles by using ultrasonic irradiation was reported. The impact of Gd3+ substitution on the structural, magnetic, dielectric and electrical properties of cobalt ferrite nanoparticles was evaluated. The sonochemically synthesized spinel ferrite nanoparticles were characterized by X-ray Diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometer (VSM). X-ray diffraction (XRD) study confirmed the formation of single phase spinel ferrite of CoFe2-xGdxO4 nanoparticles. XRD results also revealed that ultrasonic irradiation seems to be favourable to achieve highly crystalline single crystal phase gadolinium doped cobalt ferrite nanoparticles without any post annealing process. Fourier Transform Infrared and Raman Spectra confirmed the formation of spinel ferrite crystal structure. X-ray photoelectron spectroscopy revealed the impact of Gd3+ substitution in CoFe2O4 nanoparticles on cation distribution at the tetrahedral and octahedral site in spinel ferrite crystal system. The electrical properties showed that the Gd3+ doped cobalt ferrite (CoFe2-xGdxO4; x=0.20) exhibit enhanced dielectric constant (277 at 100Hz) and ac conductivity (20.2×10-9S/cm at 100Hz). The modulus spectroscopy demonstrated the impact of Gd3+ substitution in cobalt ferrite nanoparticles on grain boundary relaxation time, capacitance and resistance. Magnetic property measurement revealed that the coercivity decreases with Gd3+ substitution from 234.32Oe (x=0.00) to 12.60Oe (x=0.05) and further increases from 12.60Oe (x=0.05) to 68.62Oe (x=0.20). Moreover, saturation magnetization decreases with Gd3+ substitution from 40.19emu/g (x=0.00) to 21.58emu/g (x=0.20). This work demonstrates that the grain size and cation distribution in Gd3+ doped cobalt ferrite nanoparticles synthesized by sonochemical method, is effective in controlling the structural, magnetic, and electrical properties, and can be find very promising applications.
Solid State Phenomena | 2018
Pavel Kejik; Vlastimil Bílek; Pavel Bulejko; Jan Hajzler; Matěj Březina; Lucie Galvánková; Lukáš Kalina
This paper studies possibilities of alkali-activated fly ash (AAFA) for the preparation of systems with preserved certain porosity level. Such systems would be used for example as filtration barriers, which are commonly prepared by both energetically and economically expensive sintering process at high temperatures. Porosity preservation was facilitated by the use of only coarse fraction from fly ash particles together with the use of low water to fly ash ratio and pressure compaction. Two different doses of sodium hydroxide were used to alkali activate fly ash. Prepared specimens were moist cured at 95 °C for 24 hours. Porosity and binder phase among the fly ash grains were investigated using scanning electron microscopy (SEM), mercury intrusion porosimetry (MIP) and capillary flow porosimetry (CFP). The results showed that it is possible to prepare AAFA-based porous systems and modify their properties by changing the activator dose.
Materials | 2018
Lukáš Kalina; Vlastimil Bílek; Tomáš Kiripolský; Radoslav Novotný; Jiří Másilko
Cement kiln by-pass dust (CKD) is a fine-grained by-product of Portland clinker manufacturing. Its chemical composition is not suitable for returning back into feedstock and, therefore, it has to be discharged. Such an increasing waste production contributes to the high environmental impact of the cement industry. A possible solution for the ecological processing of CKD is its incorporation into alkali-activated blast furnace slag binders. Thanks to high alkaline content, CKD serves as an effective accelerator for latent hydraulic substances which positively affect their mechanical properties. It was found out that CKD in combination with sodium carbonate creates sodium hydroxide in situ which together with sodium water glass content increases the dissolution of blast furnace slag particles and subsequently binder phase formation resulting in better flexural and compressive strength development compared to the sample without it. At the same time, the addition of CKD compensates the autogenous shrinkage of alkali-activated materials reducing the risk of material cracking. On the other hand, this type of inorganic admixture accelerates the hydration process causing rapid loss of workability.
Key Engineering Materials | 2018
Eva Štěpánková; Lukáš Kalina; Vlastimil Bílek; Eva Bartoníčková
This paper deals with the mechanical properties and phase study of alkali activated blast furnace slag and by-pass cement kiln dust mixture. The by-pass cement kiln dust (CKD) solves the problem with significant shrinkage of alkali activated materials which is considerably limiting their practical applications. The mechanism of action of CKD in alkali activated matrix has been investigated as well as its optimal dosage in the means of mechanical properties. The reaction products during the hydration process were characterized by X-ray powder diffraction.