Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lukas Nics is active.

Publication


Featured researches published by Lukas Nics.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Differential modulation of the default mode network via serotonin-1A receptors.

Andreas Hahn; Wolfgang Wadsak; Christian Windischberger; P. Baldinger; Anna Höflich; Jan Losak; Lukas Nics; Cécile Philippe; Georg S. Kranz; Christoph Kraus; Markus Mitterhauser; Georgios Karanikas; Siegfried Kasper; Rupert Lanzenberger

Reflecting ones mental self is a fundamental process for evaluating the personal relevance of life events and for moral decision making and future envisioning. Although the corresponding network has been receiving growing attention, the driving neurochemical mechanisms of the default mode network (DMN) remain unknown. Here we combined positron emission tomography and functional magnetic resonance imaging to investigate modulations of the DMN via serotonin-1A receptors (5-HT1A), separated for 5-HT autoinhibition (dorsal raphe nucleus) and local inhibition (heteroreceptors in projection areas). Using two independent approaches, regional 5-HT1A binding consistently predicted DMN activity in the retrosplenial cortex for resting-state functional magnetic resonance imaging and the Tower of London task. On the other hand, both local and autoinhibitory 5-HT1A binding inversely modulated the posterior cingulate cortex, the strongest hub in the resting human brain. In the frontal part of the DMN, a negative association was found between the dorsal medial prefrontal cortex and local 5-HT1A inhibition. Our results indicate a modulation of key areas involved in self-referential processing by serotonergic neurotransmission, whereas variations in 5-HT1A binding explained a considerable amount of the individual variability in the DMN. Moreover, the brain regions associated with distinct introspective functions seem to be specifically regulated by the different 5-HT1A binding sites. Together with previously reported modulations of dopamine and GABA, this regional specialization suggests complex interactions of several neurotransmitters driving the default mode network.


Medicine and Science in Sports and Exercise | 2008

No indications of persistent oxidative stress in response to an ironman triathlon.

Oliver Neubauer; Daniel König; Norbert Kern; Lukas Nics; Karl-Heinz Wagner

INTRODUCTION Training for and competing in ultraendurance exercise events is associated with an improvement in endogenous antioxidant defenses as well as increased oxidative stress. However, consequences on health are currently unclear. PURPOSE We aimed to examine the impact of training- and acute exercise-induced changes in the antioxidant capacity on the oxidant/antioxidant balance after an ironman triathlon and whether there are indications for sustained oxidative damage. METHODS Blood samples were taken from 42 well-trained male triathletes 2 d before an ironman triathlon, then immediately postrace, 1, 5, and 19 d later. Blood was analyzed for conjugated dienes (CD), malondialdehyde (MDA), oxidized low-density lipoprotein (oxLDL), oxLDL:LDL ratio, advanced oxidation protein products (AOPP), AOPP:total protein (TP) ratio, Trolox equivalent antioxidant capacity (TEAC), uric acid (UA) in plasma, and activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) in erythrocytes. RESULTS Immediately postrace, there were significant increases in CD, AOPP, TEAC, UA (for all P < 0.001), and AOPP:TP (P < 0.01). MDA rose significantly (P < 0.01) 1 d postrace, whereas CD (P < 0.01), AOPP (P = 0.01), AOPP:TP (P < 0.05), and TEAC (P < 0.001) remained elevated. OxLDL:LDL trended to increase, whereas oxLDL significantly (P < 0.01) decreased 1 d postrace. Except for GSH-Px (P = 0.08), activities of SOD (P < 0.001) and CAT (P < 0.05) significantly decreased postrace. All oxidative stress markers had returned to prerace values 5 d postrace. Furthermore, several relationships between training status and oxidative stress markers, TEAC, and antioxidant enzyme activities were noted. CONCLUSIONS This study indicates that despite a temporary increase in most (but not all) oxidative stress markers, there is no persistent oxidative stress in response to an ironman triathlon, probably due to training- and exercise-induced protective alterations in the antioxidant defense system.


British Journal of Nutrition | 2010

Antioxidant responses to an acute ultra-endurance exercise: impact on DNA stability and indications for an increased need for nutritive antioxidants in the early recovery phase.

Oliver Neubauer; Stefanie Reichhold; Lukas Nics; Christine Hoelzl; Judit Valentini; Barbara Stadlmayr; Siegfried Knasmüller; Karl-Heinz Wagner

Antioxidant requirements have neither been defined for endurance nor been defined for ultra-endurance athletes. To verify whether an acute bout of ultra-endurance exercise modifies the need for nutritive antioxidants, we aimed (1) to investigate the changes of endogenous and exogenous antioxidants in response to an Ironman triathlon; (2) to particularise the relevance of antioxidant responses to the indices of oxidatively damaged blood lipids, blood cell compounds and lymphocyte DNA and (3) to examine whether potential time-points of increased susceptibility to oxidative damage are associated with alterations in the antioxidant status. Blood that was collected from forty-two well-trained male athletes 2 d pre-race, immediately post-race, and 1, 5 and 19 d later was sampled. The key findings of the present study are as follows: (1) Immediately post-race, vitamin C, α-tocopherol, and levels of the Trolox equivalent antioxidant capacity, the ferric reducing ability of plasma and the oxygen radical absorbance capacity (ORAC) assays increased significantly. Exercise-induced changes in the plasma antioxidant capacity were associated with changes in uric acid, bilirubin and vitamin C. (2) Significant inverse correlations between ORAC levels and indices of oxidatively damaged DNA immediately and 1 d post-race suggest a protective role of the acute antioxidant responses in DNA stability. (3) Significant decreases in carotenoids and γ-tocopherol 1 d post-race indicate that the antioxidant intake during the first 24 h of recovery following an acute ultra-endurance exercise requires specific attention. Furthermore, the present study illustrates the importance of a diversified and well-balanced diet to maintain a physiological antioxidant status in ultra-endurance athletes in reference to recommendations.


Applied Radiation and Isotopes | 2009

Simple and rapid preparation of [11C]DASB with high quality and reliability for routine applications.

Daniela Haeusler; L.K. Mien; Lukas Nics; Johanna Ungersboeck; Cécile Philippe; Rupert Lanzenberger; Kurt Kletter; Robert Dudczak; Markus Mitterhauser; Wolfgang Wadsak

[(11)C]DASB combines all major prerequisites for a successful SERT-ligand, providing excellent biological properties and in-vivo behaviour. Thus, we aimed to establish a fully automated procedure for the synthesis and purification of [(11)C]DASB with a high degree of reliability reducing the overall synthesis time while conserving high yields and purity. The optimized [(11)C]DASB synthesis was applied in more than 60 applications with a very low failure rate (3.2%). We obtained yields up to 8.9 GBq (average 5.3+/-1.6 GBq). Radiochemical yields based on [(11)C]CH(3)I, (corrected for decay) were 66.3+/-6.9% with a specific radioactivity (A(s)) of 86.8+/-24.3 GBq/micromol (both at the end of synthesis, EOS). Time consumption was kept to a minimum, resulting in 43 min from end of bombardment to release of the product after quality control. From our data, it is evident that the presented method can be implemented for routine preparations of [(11)C]DASB with high reliability.


Bioorganic & Medicinal Chemistry | 2012

[18F]FE@SNAP—A new PET tracer for the melanin concentrating hormone receptor 1 (MCHR1): Microfluidic and vessel-based approaches

Cécile Philippe; Johanna Ungersboeck; Eva Schirmer; Milica Zdravkovic; Lukas Nics; Markus Zeilinger; Karem Shanab; Rupert Lanzenberger; Georgios Karanikas; Helmut Spreitzer; Helmut Viernstein; Markus Mitterhauser; Wolfgang Wadsak

Graphical abstract SNAP-7941 derivatives 1–4 (1: SNAP-7941; 2: [18F]FE@SNAP; 3: SNAP-acid; 4: Tos@SNAP).


NeuroImage | 2012

Combining image-derived and venous input functions enables quantification of serotonin-1A receptors with [carbonyl-11C]WAY-100635 independent of arterial sampling.

Andreas Hahn; Lukas Nics; P. Baldinger; Johanna Ungersböck; Peter Dolliner; R. Frey; Wolfgang Birkfellner; Markus Mitterhauser; Wolfgang Wadsak; Georgios Karanikas; Siegfried Kasper; Rupert Lanzenberger

UNLABELLED image- derived input functions (IDIFs) represent a promising technique for a simpler and less invasive quantification of PET studies as compared to arterial cannulation. However, a number of limitations complicate the routine use of IDIFs in clinical research protocols and the full substitution of manual arterial samples by venous ones has hardly been evaluated. This study aims for a direct validation of IDIFs and venous data for the quantification of serotonin-1A receptor binding (5-HT(1A)) with [carbonyl-(11)C]WAY-100635 before and after hormone treatment. METHODS Fifteen PET measurements with arterial and venous blood sampling were obtained from 10 healthy women, 8 scans before and 7 after eight weeks of hormone replacement therapy. Image-derived input functions were derived automatically from cerebral blood vessels, corrected for partial volume effects and combined with venous manual samples from 10 min onward (IDIF+VIF). Corrections for plasma/whole-blood ratio and metabolites were done separately with arterial and venous samples. 5-HT(1A) receptor quantification was achieved with arterial input functions (AIF) and IDIF+VIF using a two-tissue compartment model. RESULTS Comparison between arterial and venous manual blood samples yielded excellent reproducibility. Variability (VAR) was less than 10% for whole-blood activity (p>0.4) and below 2% for plasma to whole-blood ratios (p>0.4). Variability was slightly higher for parent fractions (VARmax=24% at 5 min, p<0.05 and VAR<13% after 20 min, p>0.1) but still within previously reported values. IDIFs after partial volume correction had peak values comparable to AIFs (mean difference Δ=-7.6 ± 16.9 kBq/ml, p>0.1), whereas AIFs exhibited a delay (Δ=4 ± 6.4s, p<0.05) and higher peak width (Δ=15.9 ± 5.2s, p<0.001). Linear regression analysis showed strong agreement for 5-HT(1A) binding as obtained with AIF and IDIF+VIF at baseline (R(2)=0.95), after treatment (R(2)=0.93) and when pooling all scans (R(2)=0.93), with slopes and intercepts in the range of 0.97 to 1.07 and -0.05 to 0.16, respectively. In addition to the region of interest analysis, the approach yielded virtually identical results for voxel-wise quantification as compared to the AIF. CONCLUSIONS Despite the fast metabolism of the radioligand, manual arterial blood samples can be substituted by venous ones for parent fractions and plasma to whole-blood ratios. Moreover, the combination of image-derived and venous input functions provides a reliable quantification of 5-HT(1A) receptors. This holds true for 5-HT(1A) binding estimates before and after treatment for both regions of interest-based and voxel-wise modeling. Taken together, the approach provides less invasive receptor quantification by full independence of arterial cannulation. This offers great potential for the routine use in clinical research protocols and encourages further investigation for other radioligands with different kinetic characteristics.


Nuclear Medicine and Biology | 2013

Preclinical in vitro & in vivo evaluation of [11C]SNAP-7941 – the first PET tracer for the melanin concentrating hormone receptor 1

Cécile Philippe; Lukas Nics; Markus Zeilinger; Claudia Kuntner; Thomas Wanek; Severin Mairinger; Karem Shanab; Helmut Spreitzer; Helmut Viernstein; Wolfgang Wadsak; Markus Mitterhauser

INTRODUCTION Due to its involvement in a variety of pathologies (obesity, diabetes, gut inflammation and depression), the melanin concentrating hormone receptor 1 (MCHR1) is a new target for the treatment of these lifestyle diseases. We previously presented the radiosynthesis of [(11)C]SNAP-7941, the first potential PET tracer for the MCHR1. METHODS We herein present its in vitro and in vivo evaluation, including binding affinity, plasma stability, stability against liver mircrosomes and carboxylesterase, lipohilicity, biodistribution, in vivo metabolism and small-animal PET. RESULTS [(11)C]SNAP-7941 evinced high stability against liver microsomes, carboxylesterase and in human plasma. The first small-animal PET experiments revealed a 5 fold increased brain uptake after Pgp/BCRP inhibition. Therefore, it can be assumed that [(11)C]SNAP-7941 is a Pgp/BCRP substrate. No metabolites were found in brain. CONCLUSION On the basis of these experiments with healthy rats, the suitability of [(11)C]SNAP-7941 for the visualisation of central and peripheral MCHR1 remains speculative.


Nuclear Medicine and Biology | 2010

[18F]FE@SUPPY and [18F]FE@SUPPY:2 — metabolic considerations

Daniela Haeusler; Lukas Nics; Leonhard-Key Mien; Johanna Ungersboeck; Rupert Lanzenberger; Karem Shanab; Helmut Spreitzer; Karoline Sindelar; Helmut Viernstein; Karl-Heinz Wagner; Robert Dudczak; Kurt Kletter; Wolfgang Wadsak; Markus Mitterhauser

INTRODUCTION Recently, [(18)F]FE@SUPPY and [(18)F]FE@SUPPY:2 were introduced as the first positron emission tomography (PET) tracers for the adenosine A(3) receptor. Thus, aim of the present study was the metabolic characterization of the two adenosine A(3) receptor PET tracers. METHODS In vitro carboxylesterase (CES) experiments were conducted using incubation mixtures containing different concentrations of the two substrates, porcine CES and phosphate-buffered saline. Enzymatic reactions were stopped by adding acetonitrile/methanol (10:1) after various time points and analyzed by a high-performance liquid chromatography (HPLC) standard protocol. In vivo experiments were conducted in male wild-type rats; tracers were injected through a tail vein. Rats were sacrificed after various time points (n=3), and blood and brain samples were collected. Sample cleanup was performed by an HPLC standard protocol. RESULTS The rate of enzymatic hydrolysis by CES demonstrated Michaelis-Menten constants in a micromolar range (FE@SUPPY, 20.15 microM, and FE@SUPPY:2, 13.11 microM) and limiting velocities of 0.035 and 0.015 microM/min for FE@SUPPY and FE@SUPPY:2, respectively. Degree of metabolism in blood showed the following: 15 min pi 47.7% of [(18)F]FE@SUPPY was intact compared to 33.1% of [(18)F]FE@SUPPY:2; 30 min pi 30.3% intact [(18)F]FE@SUPPY was found compared to 15.6% [(18)F]FE@SUPPY:2. In brain, [(18)F]FE@SUPPY:2 formed an early hydrophilic metabolite, whereas metabolism of [(18)F]FE@SUPPY was not observed before 30 min pi CONCLUSION Knowing that metabolism in rats is several times faster than in human, we conclude that [(18)F]FE@SUPPY should be stable for the typical time span of a clinical investigation. As a consequence, from a metabolic point of view, one would tend to decide in favor of [(18)F]FE@SUPPY.


Applied Radiation and Isotopes | 2013

Reliable set-up for in-loop 11C-carboxylations using Grignard reactions for the preparation of [carbonyl-11C]WAY-100635 and [11C]-(+)-PHNO

Christina Rami-Mark; Johanna Ungersboeck; Daniela Haeusler; Lukas Nics; Cécile Philippe; Markus Mitterhauser; M. Willeit; Rupert Lanzenberger; Georgios Karanikas; Wolfgang Wadsak

Aim of this work was the implementation of a generalized in-loop synthesis for 11C-carboxylations and subsequent 11C-acylations on the TRACERlab FxC Pro platform. The set-up was tested using [carbonyl-11C]WAY-100635 and, for the first time, [11C]-(+)-PHNO. Its general applicability could be demonstrated and both [carbonyl-11C]WAY-100635 and [11C]-(+)-PHNO were prepared with high reliability and satisfying outcome.


The Journal of Nuclear Medicine | 2016

Quantification of Task-Specific Glucose Metabolism with Constant Infusion of 18F-FDG

Andreas Hahn; Gregor Gryglewski; Lukas Nics; Marius Hienert; Lucas Rischka; Chrysoula Vraka; Helen Sigurdardottir; G.M. James; R. Seiger; Alexander Kautzky; Leo Silberbauer; Wolfgang Wadsak; Markus Mitterhauser; Marcus Hacker; Siegfried Kasper; Rupert Lanzenberger

The investigation of cerebral metabolic rate of glucose (CMRGlu) at baseline and during specific tasks previously required separate scans with the drawback of high intrasubject variability. We aimed to validate a novel approach to assessing baseline glucose metabolism and task-specific changes in a single measurement with a constant infusion of 18F-FDG. Methods: Fifteen healthy subjects underwent two PET measurements with arterial blood sampling. As a reference, baseline CMRGlu was quantified from a 60-min scan after 18F-FDG bolus application using the Patlak plot (eyes closed). For the other scan, a constant radioligand infusion was applied for 95 min, during which the subjects opened their eyes at 10–20 min and 60–70 min and tapped their right thumb to their fingers at 35–45 min and 85–95 min. The constant-infusion scan was quantified in two steps. First, the general linear model was used to fit regional time–activity curves with regressors for baseline metabolism, task-specific changes for the eyes-open and finger-tapping conditions, and movement parameters. Second, the Patlak plot was used for quantification of CMRGlu. Multiplication of the baseline regressor by β-values from the general linear model yielded regionally specific time–activity curves for baseline metabolism. Further, task-specific changes in metabolism are directly proportional to changes in the slope of the time–activity curve and hence to changes in CMRGlu. Results: Baseline CMRGlu from the constant-infusion scan matched that from the bolus application (test–retest variability, 1.1% ± 24.7%), which was not the case for a previously suggested approach (variability, −39.9% ± 25.2%, P < 0.001). Task-specific CMRGlu increased in the primary visual and motor cortices for eyes open and finger tapping, respectively (P < 0.05, familywise error–corrected), with absolute changes of up to 2.1 μmol/100 g/min and 6.3% relative to baseline. For eyes open, a decreased CMRGlu was observed in default-mode regions (P < 0.05, familywise error–corrected). CMRGlu quantified with venous blood samples (n = 6) showed excellent agreement with results obtained from arterial samples (r > 0.99). Conclusion: Baseline glucose metabolism and task-specific changes can be quantified in a single measurement with constant infusion of 18F-FDG and venous blood sampling. The high sensitivity and regional specificity of the approach offer novel possibilities for functional and multimodal brain imaging.

Collaboration


Dive into the Lukas Nics's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rupert Lanzenberger

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Cécile Philippe

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Marcus Hacker

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Daniela Haeusler

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chrysoula Vraka

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Johanna Ungersboeck

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge