Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lukáš Ondič is active.

Publication


Featured researches published by Lukáš Ondič.


Journal of Physical Chemistry C | 2015

Size and Purity Control of HPHT Nanodiamonds down to 1 nm

Stepan Stehlik; Marian Varga; Martin Ledinsky; Vít Jirásek; Anna Artemenko; Halyna Kozak; Lukáš Ondič; Viera Skakalova; Giacomo Argentero; Timothy J. Pennycook; Jannik C. Meyer; A. Fejfar; Alexander Kromka; Bohuslav Rezek

High-pressure high-temperature (HPHT) nanodiamonds originate from grinding of diamond microcrystals obtained by HPHT synthesis. Here we report on a simple two-step approach to obtain as small as 1.1 nm HPHT nanodiamonds of excellent purity and crystallinity, which are among the smallest artificially prepared nanodiamonds ever shown and characterized. Moreover we provide experimental evidence of diamond stability down to 1 nm. Controlled annealing at 450 °C in air leads to efficient purification from the nondiamond carbon (shells and dots), as evidenced by X-ray photoelectron spectroscopy, Raman spectroscopy, photoluminescence spectroscopy, and scanning transmission electron microscopy. Annealing at 500 °C promotes, besides of purification, also size reduction of nanodiamonds down to ∼1 nm. Comparably short (1 h) centrifugation of the nanodiamonds aqueous colloidal solution ensures separation of the sub-10 nm fraction. Calculations show that an asymmetry of Raman diamond peak of sub-10 nm HPHT nanodiamonds can be well explained by modified phonon confinement model when the actual particle size distribution is taken into account. In contrast, larger Raman peak asymmetry commonly observed in Raman spectra of detonation nanodiamonds is mainly attributed to defects rather than to the phonon confinement. Thus, the obtained characteristics reflect high material quality including nanoscale effects in sub-10 nm HPHT nanodiamonds prepared by the presented method.


Applied Physics Letters | 2012

Luminescence of free-standing versus matrix-embedded oxide-passivated silicon nanocrystals: The role of matrix-induced strain

Kateřina Kůsová; Lukáš Ondič; Eva Klimešová; Kateřina Herynková; I. Pelant; Stanislav Daniš; Jan Valenta; M. Gallart; Marc Ziegler; B. Hönerlage; P. Gilliot

We collect a large number of experimental data from various sources to demonstrate that free-standing (FS) oxide-passivated silicon nanocrystals (SiNCs) exhibit considerably blueshifted emission, by 200 meV on average, compared to those prepared as matrix-embedded (ME) ones of the same size. This is suggested to arise from compressive strain, exerted on the nanocrystals by their matrix, which plays an important role in the light-emission process; this strain has been neglected up to now as opposed to the impact of quantum confinement or surface passivation. Our conclusion is also supported by the comparison of low-temperature behavior of photoluminescence of matrix-embedded and free-standing silicon nanocrystals.


Scientific Reports | 2012

Diamond photonic crystal slab: leaky modes and modified photoluminescence emission of surface-deposited quantum dots.

Lukáš Ondič; Oleg Babchenko; Marian Varga; Alexander Kromka; Jiří Čtyroký; I. Pelant

Detailed analysis of a band diagram of a photonic crystal (PhC) slab prepared on a nano-diamond layer is presented. Even though the PhC is structurally imperfect, the existence of leaky modes, determined both theoretically and experimentally in the broad spectral region, implies that an efficient light interaction with a material periodicity occurs in the sample. It is shown that the luminescence emission spectrum of a light source placed directly on the PhC surface can be modified by employing the optical modes of the studied structure. We stress also the impact of intrinsic optical losses of the nano-diamond on this modification.


Applied Physics Letters | 2013

Two-dimensional photonic crystal slab with embedded silicon nanocrystals: Efficient photoluminescence extraction

Lukáš Ondič; Marian Varga; Karel Hruska; Alexander Kromka; Kateřina Herynková; B. Hönerlage; I. Pelant

A two-dimensional photonic crystal (PhC) slab was fabricated from a luminescent planar waveguide, formed by a (800 nm thick) layer of silicon nanocrystals (SiNCs) embedded in a polished silica plate. Dimensions of the PhC were designed so that light emitted by SiNCs under excitation with an external UV source can, during its propagation in the layer, interact with the periodicity and be Bragg-diffracted into air. This approach leads to up to 8-fold vertical extraction enhancement of SiNCs luminescence from the PhC slab compared to the bare planar layer. Results of the experiment are supported by the computer simulation.


ACS Nano | 2017

Enhanced Extraction of Silicon-Vacancy Centers Light Emission Using Bottom-Up Engineered Polycrystalline Diamond Photonic Crystal Slabs

Lukáš Ondič; Marian Varga; Karel Hruska; Jan Fait; Peter Kapusta

Silicon vacancy (SiV) centers are optically active defects in diamond. The SiV centers, in contrast to nitrogen vacancy (NV) centers, possess narrow and efficient luminescence spectrum (centered at ≈738 nm) even at room temperature, which can be utilized for quantum photonics and sensing applications. However, most of light generated in diamond is trapped in the material due to the phenomenon of total internal reflection. In order to overcome this issue, we have prepared two-dimensional photonic crystal slabs from polycrystalline diamond thin layers with high density of SiV centers employing bottom-up growth on quartz templates. We have shown that the spectral overlap between the narrow light emission of the SiV centers and the leaky modes extracting the emission into almost vertical direction (where it can be easily detected) can be obtained by controlling the deposition time. More than 14-fold extraction enhancement of the SiV centers photoluminescence was achieved compared to an uncorrugated sample. Computer simulation confirmed that the extraction enhancement originates from the efficient light-matter interaction between light emitted from the SiV centers and the photonic crystal slab.


Scientific Reports | 2017

Silicon nanocrystal-based photonic crystal slabs with broadband and efficient directional light emission

Lukáš Ondič; Marian Varga; I. Pelant; Jan Valenta; Alexander Kromka; R. G. Elliman

Light extraction from a thin planar layer can be increased by introducing a two-dimensional periodic pattern on its surface. This structure, the so-called photonic crystal (PhC) slab, then not only enhances the extraction efficiency of light but can direct the extracted emission into desired angles. Careful design of the structures is important in order to have a spectral overlap of the emission with extraction (leaky) modes. We show that by fabricating PhC slabs with optimized dimensions from silicon nanocrystals (SiNCs) active layers, the extraction efficiency of vertical light emission from SiNCs at a particular wavelength can be enhanced ∼ 11 times compared to that of uncorrugated SiNCs-rich layer. More importantly, increased light emission can be obtained in a broad spectral range and, simultaneously, the extracted light can stay confined within relatively narrow angle around the normal to the sample plane. We demonstrate experimentally and theoretically that the physical origin of the enhancement is such that light originating from SiNCs first couples to leaky modes of the PhCs and is then efficiently extracted into the surrounding.


ACS Applied Materials & Interfaces | 2017

Ultrathin Nanocrystalline Diamond Films with Silicon Vacancy Color Centers via Seeding by 2 nm Detonation Nanodiamonds

Stepan Stehlik; Marian Varga; Pavla Stenclova; Lukáš Ondič; Martin Ledinsky; Jiri Pangrac; Ondrej Vanek; Jan Lipov; Alexander Kromka; Bohuslav Rezek

Color centers in diamonds have shown excellent potential for applications in quantum information processing, photonics, and biology. Here we report chemical vapor deposition (CVD) growth of nanocrystalline diamond (NCD) films as thin as 5-6 nm with photoluminescence (PL) from silicon-vacancy (SiV) centers at 739 nm. Instead of conventional 4-6 nm detonation nanodiamonds (DNDs), we prepared and employed hydrogenated 2 nm DNDs (zeta potential = +36 mV) to form extremely dense (∼1.3 × 1013 cm-2), thin (2 ± 1 nm), and smooth (RMS roughness < 0.8 nm) nucleation layers on an Si/SiOx substrate, which enabled the CVD growth of such ultrathin NCD films in two different and complementary microwave (MW) CVD systems: (i) focused MW plasma with an ellipsoidal cavity resonator and (ii) pulsed MW plasma with a linear antenna arrangement. Analytical ultracentrifuge, infrared and Raman spectroscopies, atomic force microscopy, and scanning electron microscopy are used for detailed characterization of the 2 nm H-DNDs and the nucleation layer as well as the ultrathin NCD films. We also demonstrate on/off switching of the SiV center PL in the NCD films thinner than 10 nm, which is achieved by changing their surface chemistry.


Physica Scripta | 2010

Time-resolved measurements of optical gain and photoluminescence in silicon nanocrystals

K. Dohnalová; Kateřina Kůsová; Ondřej Cibulka; Lukáš Ondič; I. Pelant

In this paper, we present time-resolved optical gain spectroscopy using a combination of the variable stripe length and the shifting excitation spot techniques under pulsed nanosecond excitation at 355 nm. Optical gain measurements in the temporal detection window of 10 ns width, coincident with the excitation pulse, revealed induced absorption losses, whereas measurements with a different detection gate width and delay in two main photoluminescence components (a fast band at ~430 nm decaying in nanoseconds and a slow band at ~620 nm decaying in microseconds) show a positive optical gain of the order of tens of cm-1.


Micromachines | 2018

Silicon-Vacancy Centers in Ultra-Thin Nanocrystalline Diamond Films

Stepan Stehlik; Lukáš Ondič; Marian Varga; Jan Fait; Anna Artemenko; Thilo Glatzel; Alexander Kromka; Bohuslav Rezek

Color centers in diamond have shown excellent potential for applications in quantum information processing, photonics, and biology. Here we report the optoelectronic investigation of shallow silicon vacancy (SiV) color centers in ultra-thin (7–40 nm) nanocrystalline diamond (NCD) films with variable surface chemistry. We show that hydrogenated ultra-thin NCD films exhibit no or lowered SiV photoluminescence (PL) and relatively high negative surface photovoltage (SPV) which is ascribed to non-radiative electron transitions from SiV to surface-related traps. Higher SiV PL and low positive SPV of oxidized ultra-thin NCD films indicate an efficient excitation—emission PL process without significant electron escape, yet with some hole trapping in diamond surface states. Decreasing SPV magnitude and increasing SiV PL intensity with thickness, in both cases, is attributed to resonant energy transfer between shallow and bulk SiV. We also demonstrate that thermal treatments (annealing in air or in hydrogen gas), commonly applied to modify the surface chemistry of nanodiamonds, are also applicable to ultra-thin NCD films in terms of tuning their SiV PL and surface chemistry.


Beilstein Journal of Nanotechnology | 2018

Two-dimensional photonic crystals increasing vertical light emission from Si nanocrystal-rich thin layers

Lukáš Ondič; Marian Varga; I. Pelant; Alexander Kromka; Karel Hruska; Robert G. Elliman

We have fabricated two-dimensional photonic crystals (PhCs) on the surface of Si nanocrystal-rich SiO2 layers with the goal to maximize the photoluminescence extraction efficiency in the normal direction. The fabricated periodic structures consist of columns ordered into square and hexagonal pattern with lattice constants computed such that the red photoluminescence of Si nanocrystals (SiNCs) could couple to leaky modes of the PhCs and could be efficiently extracted to surrounding air. Samples having different lattice constants and heights of columns were investigated in order to find the configuration with the best performance. Spectral overlap of the leaky modes with the luminescence spectrum of SiNCs was verified experimentally by measuring photonic band diagrams of the leaky modes employing angle-resolved spectroscopy and also theoretically by computing the reflectance spectra. The extraction enhancement within different spatial angles was evaluated by means of micro-photoluminescence spectroscopy. More than 18-fold extraction enhancement was achieved for light propagating in the normal direction and up to 22% increase in overall intensity was obtained at the spatial collection angle of 14°.

Collaboration


Dive into the Lukáš Ondič's collaboration.

Top Co-Authors

Avatar

Marian Varga

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

I. Pelant

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Alexander Kromka

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Kateřina Kůsová

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Bohuslav Rezek

Czech Technical University in Prague

View shared research outputs
Top Co-Authors

Avatar

Jan Valenta

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Stepan Stehlik

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Karel Hruska

University of West Bohemia

View shared research outputs
Top Co-Authors

Avatar

Ondřej Cibulka

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Anna Artemenko

Charles University in Prague

View shared research outputs
Researchain Logo
Decentralizing Knowledge