Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lukas Richtera is active.

Publication


Featured researches published by Lukas Richtera.


Nutrition | 2017

Selenium nanoparticles as a nutritional supplement.

Sylvie Skalickova; Vedran Milosavljevic; Kristyna Cihalova; Pavel Horky; Lukas Richtera; Vojtech Adam

Selenium is an essential trace element in the diet, required for maintenance of health and growth; however, its toxicity could cause serious damage depending on dose and chemical form. Selenium nanoparticles (SeNPs) represent what we believe to be a novel prospect for nutritional supplementation because of their lower toxicity and ability to gradually release selenium after ingestion. In this review, we discuss various forms and types of SeNPs, as well as the way they are synthesized. We also discuss absorption and bioavailability of nanoparticles within the organism. SeNPs demonstrate anticancer and antimicrobial properties that may contribute to human health, not only as dietary supplements, but also as therapeutic agents.


Nanomaterials | 2017

Magnetic Nanoparticles: From Design and Synthesis to Real World Applications

Jiri Kudr; Yazan Haddad; Lukas Richtera; Zbynek Heger; Mirko Černák; Vojtech Adam; Ondrej Zitka

The increasing number of scientific publications focusing on magnetic materials indicates growing interest in the broader scientific community. Substantial progress was made in the synthesis of magnetic materials of desired size, morphology, chemical composition, and surface chemistry. Physical and chemical stability of magnetic materials is acquired by the coating. Moreover, surface layers of polymers, silica, biomolecules, etc. can be designed to obtain affinity to target molecules. The combination of the ability to respond to the external magnetic field and the rich possibilities of coatings makes magnetic materials universal tool for magnetic separations of small molecules, biomolecules and cells. In the biomedical field, magnetic particles and magnetic composites are utilized as the drug carriers, as contrast agents for magnetic resonance imaging (MRI), and in magnetic hyperthermia. However, the multifunctional magnetic particles enabling the diagnosis and therapy at the same time are emerging. The presented review article summarizes the findings regarding the design and synthesis of magnetic materials focused on biomedical applications. We highlight the utilization of magnetic materials in separation/preconcentration of various molecules and cells, and their use in diagnosis and therapy.


Biosensors and Bioelectronics | 2017

Carbon dots based FRET for the detection of DNA damage

Jiri Kudr; Lukas Richtera; Kledi Xhaxhiu; David Hynek; Zbynek Heger; Ondrej Zitka; Vojtech Adam

Here, we aimed our attention at the synthesis of carbon dots (C-dots) with the ability to interact with DNA to suggest an approach for the detection of DNA damage. Primarily, C-dots modified with amine moieties were synthesized using the one-step microwave pyrolysis of citric acid in the presence of diethylenetriamine. The C-dots showed strong photoluminescence with a quantum yield of 4%. In addition, the C-dots (2.8±0.8nm) possessed a good colloidal stability and exhibited a positive surface charge (ζ=36mV) at a neutral pH. An interaction study of the C-dots and the DNA fragment of λ bacteriophage was performed, and the DNA binding resulted in changes to the photoluminescent and absorption properties of the C-dots. A binding of the C-dots to DNA was also observed as a change to DNA electrophoretic mobility and a decreased ability to intercalate ethidium bromide (EtBr). Moreover, the Förster (or fluorescence) resonance energy transfer (FRET) between the C-dots and EtBr was studied, in which the C-dots serve as an excitation energy donor and the EtBr serves as an acceptor. When DNA was damaged using ultraviolet (UV) radiation (λ=254nm) and hydroxyl radicals, the intensity of the emitted photoluminescence at 612nm significantly decreased. The concept was proved on analysis of the genomic DNA from PC-3 cells and DNA isolated from melanoma tissues.


Biosensors and Bioelectronics | 2017

Current trends in electrochemical sensing and biosensing of DNA methylation

Ludmila Krejcova; Lukas Richtera; David Hynek; Ján Labuda; Vojtech Adam

DNA methylation plays an important role in physiological and pathological processes. Several genetic diseases and most malignancies tend to be associated with aberrant DNA methylation. Among other analytical methods, electrochemical approaches have been successfully employed for characterisation of DNA methylation patterns that are essential for the diagnosis and treatment of particular diseases. This article discusses current trends in the electrochemical sensing and biosensing of DNA methylation. Particularly, it provides an overview of applied electrode materials, electrode modifications and biorecognition elements applications with an emphasis on strategies that form the core DNA methylation detection approaches. The three main strategies as (i) bisulfite treatment, (ii) cleavage by restriction endonucleases, and (iii) immuno/affinity reaction were described in greater detail. Additionally, the availability of the reviewed platforms for early cancer diagnosis and the approval of methylation inhibitors for anticancer therapy were discussed.


Journal of Biotechnology | 2017

Comparative study on toxicity of extracellularly biosynthesized and laboratory synthesized CdTe quantum dots

Marketa Kominkova; Vedran Milosavljevic; Petr Vitek; Hana Polanská; Kristyna Cihalova; Simona Dostalova; Veronika Hynstova; Roman Guran; Pavel Kopel; Lukas Richtera; Michal Masarik; Martin Brtnicky; Jindrich Kynicky; Ondrej Zitka; Vojtech Adam

Nanobiosynthesis belongs to the most recent methods for synthesis of nanoparticles. This type of synthesis provides many advantages including the uniformity in particle shape and size. The biosynthesis has also a significant advantage regarding chemical properties of the obtained particles. In this study, we characterized the basic properties and composition of quantum dots (QDs), obtained by the extracellular biosynthesis by Escherichia coli. Furthermore, the toxicity of the biosynthesized QDs was compared to QDs prepared by microwave synthesis. The obtained results revealed the presence of cyan CdTe QDs after removal of substantial amounts of organic compounds, which stabilized the nanoparticle surface. QDs toxicity was evaluated using three cell lines Human Foreskin Fibroblast (HFF), Human Prostate Cancer cells (PC-3) and Breast Cancer cells (MCF-7) and the MTT assay. The test revealed differences in the toxicity between variants of QDs, varying about 10% in the HFF and 30% in the MCF-7 cell lines. The toxicity of the biosynthesized QDs to the PC-3 cell lines was about 35% lower in comparison with the QDs prepared by microwave synthesis.


Materials | 2016

Improved Electrochemical Detection of Zinc Ions Using Electrode Modified with Electrochemically Reduced Graphene Oxide

Jiri Kudr; Lukas Richtera; Kledi Xhaxhiu; Petr Vitek; Branislav Rutkay-Nedecky; David Hynek; Pavel Kopel; Vojtech Adam; Rene Kizek

Increasing urbanization and industrialization lead to the release of metals into the biosphere, which has become a serious issue for public health. In this paper, the direct electrochemical reduction of zinc ions is studied using electrochemically reduced graphene oxide (ERGO) modified glassy carbon electrode (GCE). The graphene oxide (GO) was fabricated using modified Hummers method and was electrochemically reduced on the surface of GCE by performing cyclic voltammograms from 0 to −1.5 V. The modification was optimized and properties of electrodes were determined using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The determination of Zn(II) was performed using differential pulse voltammetry technique, platinum wire as a counter electrode, and Ag/AgCl/3 M KCl reference electrode. Compared to the bare GCE the modified GCE/ERGO shows three times better electrocatalytic activity towards zinc ions, with an increase of reduction current along with a negative shift of reduction potential. Using GCE/ERGO detection limit 5 ng·mL−1 was obtained.


International Journal of Molecular Sciences | 2017

The Application of Curve Fitting on the Voltammograms of Various Isoforms of Metallothioneins-Metal Complexes

Jorge Molina-López; Ana Jiménez; Elena Pozo; Pavlina Adam; Tomas Eckschlager; Ondrej Zitka; Lukas Richtera; Vojtech Adam

The translation of metallothioneins (MTs) is one of the defense strategies by which organisms protect themselves from metal-induced toxicity. MTs belong to a family of proteins comprising MT-1, MT-2, MT-3, and MT-4 classes, with multiple isoforms within each class. The main aim of this study was to determine the behavior of MT in dependence on various externally modelled environments, using electrochemistry. In our study, the mass distribution of MTs was characterized using MALDI-TOF. After that, adsorptive transfer stripping technique with differential pulse voltammetry was selected for optimization of electrochemical detection of MTs with regard to accumulation time and pH effects. Our results show that utilization of 0.5 M NaCl, pH 6.4, as the supporting electrolyte provides a highly complicated fingerprint, showing a number of non-resolved voltammograms. Hence, we further resolved the voltammograms exhibiting the broad and overlapping signals using curve fitting. The separated signals were assigned to the electrochemical responses of several MT complexes with zinc(II), cadmium(II), and copper(II), respectively. Our results show that electrochemistry could serve as a great tool for metalloproteomic applications to determine the ratio of metal ion bonds within the target protein structure, however, it provides highly complicated signals, which require further resolution using a proper statistical method, such as curve fitting.


Electrophoresis | 2015

Label-free bead-based metallothionein electrochemical immunosensor

Hoai Viet Nguyen; Lukas Richtera; Sona Krizkova; Roman Guran; Michal Masarik; David Hynek; Zbynek Heger; Karin Lundberg; Kristofer Erikson; Vojtech Adam; Rene Kizek

A novel microfluidic label‐free bead‐based metallothionein immunosensors was designed. To the surface of superparamagnetic agarose beads coated with protein A, polyclonal chicken IgY specifically recognizing metallothionein (MT) were immobilized via rabbit IgG. The Brdicka reaction was used for metallothionein detection in a microfluidic printed 3D chip. The assembled chip consisted of a single copper wire coated with a thin layer of amalgam as working electrode. Optimization of MT detection using designed microfluidic chip was performed in stationary system as well as in the flow arrangement at various flow rates (0–1800 μL/min). In stationary arrangement it is possible to detect MT concentrations up to 30 ng/mL level, flow arrangement allows reliable detection of even lower concentration (12.5 ng/mL). The assembled miniature flow chip was subsequently tested for the detection of MT elevated levels (at approx. level 100 μg/mL) in samples of patients with cancer. The stability of constructed device for metallothionein detection in flow arrangement was found to be several days without any maintenance needed.


International Journal of Molecular Sciences | 2016

Specific Magnetic Isolation of E6 HPV16 Modified Magnetizable Particles Coupled with PCR and Electrochemical Detection.

Ana Jiménez; Branislav Ruttkay-Nedecky; Simona Dostalova; Ludmila Krejcova; Petr Michalek; Lukas Richtera; Vojtech Adam

The majority of carcinomas that were developed due to the infection with human papillomavirus (HPV) are caused by high-risk HPV types, HPV16 and HPV18. These HPV types contain the E6 and E7 oncogenes, so the fast detection of these oncogenes is an important point to avoid the development of cancer. Many different HPV tests are available to detect the presence of HPV in biological samples. The aim of this study was to design a fast and low cost method for HPV identification employing magnetic isolation, polymerase chain reaction (PCR) and electrochemical detection. These assays were developed to detect the interactions between E6-HPV16 oncogene and magnetizable particles (MPs) using commercial Dynabeads M-280 Streptavidin particles and laboratory-synthesized “homemade” particles called MANs (MAN-37, MAN-127 and MAN-164). The yields of PCR amplification of E6-HPV16 oncogene bound on the particles and after the elution from the particles were compared. A highest yield of E6-HPV16 DNA isolation was obtained with both MPs particles commercial M-280 Streptavidin and MAN-37 due to reducing of the interferents compared with the standard PCR method. A biosensor employing the isolation of E6-HPV16 oncogene with MPs particles followed by its electrochemical detection can be a very effective technique for HPV identification, providing simple, sensitive and cost-effective analysis.


PLOS ONE | 2015

Exposure to 17β-Oestradiol Induces Oxidative Stress in the Non-Oestrogen Receptor Invertebrate Species Eisenia fetida

Zbynek Heger; Petr Michalek; Roman Guran; Barbora Havelkova; Marketa Kominkova; Natalia Cernei; Lukas Richtera; Miroslava Beklova; Vojtech Adam; Rene Kizek

Background The environmental impacts of various substances on all levels of organisms are under investigation. Among these substances, endocrine-disrupting compounds (EDCs) present a threat, although the environmental significance of these compounds remains largely unknown. To shed some light on this field, we assessed the effects of 17β-oestradiol on the growth, reproduction and formation of free radicals in Eisenia fetida. Methodology/Principal Findings Although the observed effects on growth and survival were relatively weak, a strong impact on reproduction was observed (50.70% inhibition in 100 μg/kg of E2). We further demonstrated that the exposure of the earthworm Eisenia fetida to a contaminant of emerging concern, 17β-oestradiol (E2), significantly affected the molecules involved in antioxidant defence. Exposure to E2 results in the production of reactive oxygen species (ROS) and the stimulation of antioxidant systems (metallothionein and reduced oxidized glutathione ratio) but not phytochelatins at both the mRNA and translated protein levels. Matrix-assisted laser desorption/ionization (MALDI)-imaging revealed the subcuticular bioaccumulation of oestradiol-3,4-quinone, altering the levels of local antioxidants in a time-dependent manner. Conclusions/Significance The present study illustrates that although most invertebrates do not possess oestrogen receptors, these organisms can be affected by oestrogen hormones, likely reflecting free diffusion into the cellular microenvironment with subsequent degradation to molecules that undergo redox cycling, producing ROS, thereby increasing environmental contamination that also perilously affects keystone animals, forming lower trophic levels.

Collaboration


Dive into the Lukas Richtera's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zbynek Heger

Central European Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amitava Moulick

Central European Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rene Kizek

University of Veterinary and Pharmaceutical Sciences Brno

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge