Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lukas Wacker is active.

Publication


Featured researches published by Lukas Wacker.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Differential mobilization of terrestrial carbon pools in Eurasian Arctic river basins

Xiaojuan Feng; Jorien E. Vonk; Bart E. van Dongen; Örjan Gustafsson; Igor Semiletov; Oleg Dudarev; Zhiheng Wang; Daniel B. Montlucon; Lukas Wacker; Timothy I. Eglinton

Mobilization of Arctic permafrost carbon is expected to increase with warming-induced thawing. However, this effect is challenging to assess due to the diverse processes controlling the release of various organic carbon (OC) pools from heterogeneous Arctic landscapes. Here, by radiocarbon dating various terrestrial OC components in fluvially and coastally integrated estuarine sediments, we present a unique framework for deconvoluting the contrasting mobilization mechanisms of surface vs. deep (permafrost) carbon pools across the climosequence of the Eurasian Arctic. Vascular plant-derived lignin phenol 14C contents reveal significant inputs of young carbon from surface sources whose delivery is dominantly controlled by river runoff. In contrast, plant wax lipids predominantly trace ancient (permafrost) OC that is preferentially mobilized from discontinuous permafrost regions, where hydrological conduits penetrate deeper into soils and thermokarst erosion occurs more frequently. Because river runoff has significantly increased across the Eurasian Arctic in recent decades, we estimate from an isotopic mixing model that, in tandem with an increased transfer of young surface carbon, the proportion of mobilized terrestrial OC accounted for by ancient carbon has increased by 3–6% between 1985 and 2004. These findings suggest that although partly masked by surface carbon export, climate change-induced mobilization of old permafrost carbon is well underway in the Arctic.


Radiocarbon | 2010

MICADAS: Routine and High-Precision Radiocarbon Dating

Lukas Wacker; G. Bonani; M Friedrich; Irka Hajdas; B Kromer; N Nemec; M Ruff; M. Suter; H-A Synal; C Vockenhuber

The prototype mini carbon dating system (MICADAS) at ETH Zurich has been in routine operation for almost 2 yr. Because of its simple and compact layout, setting up a radiocarbon measurement is fast and the system runs very reliably over days or even weeks without retuning. The stability of the instrument is responsible for the good performance in highest-precision measurements where results of single samples can be reproduced within less than 2‰. The measurements are described and the performance of MICADAS is demonstrated on measured data.


Journal of Geophysical Research | 2014

Diurnal cycle of fossil and nonfossil carbon using radiocarbon analyses during CalNex

Peter Zotter; Imad El-Haddad; Yanlin Zhang; Patrick L. Hayes; Xiaolu Zhang; Ying Hsuan Lin; Lukas Wacker; Jürgen Schnelle-Kreis; Gülcin Abbaszade; Ralf Zimmermann; Jason D. Surratt; Rodney J. Weber; Jose L. Jimenez; Sönke Szidat; Urs Baltensperger; André S. H. Prévôt

Radiocarbon (14C) analysis is a unique tool to distinguish fossil/nonfossil sources of carbonaceous aerosols. We present 14C measurements of organic carbon (OC) and total carbon (TC) on highly time resolved filters (3–4 h, typically 12 h or longer have been reported) from 7 days collected during California Research at the Nexus of Air Quality and Climate Change (CalNex) 2010 in Pasadena. Average nonfossil contributions of 58% ± 15% and 51% ± 15% were found for OC and TC, respectively. Results indicate that nonfossil carbon is a major constituent of the background aerosol, evidenced by its nearly constant concentration (2–3 μgC m−3). Cooking is estimated to contribute at least 25% to nonfossil OC, underlining the importance of urban nonfossil OC sources. In contrast, fossil OC concentrations have prominent and consistent diurnal profiles, with significant afternoon enhancements (~3 μgC m−3), following the arrival of the western Los Angeles (LA) basin plume with the sea breeze. A corresponding increase in semivolatile oxygenated OC and organic vehicular emission markers and their photochemical reaction products occurs. This suggests that the increasing OC is mostly from fresh anthropogenic secondary OC (SOC) from mainly fossil precursors formed in the western LA basin plume. We note that in several European cities where the diesel passenger car fraction is higher, SOC is 20% less fossil, despite 2–3 times higher elemental carbon concentrations, suggesting that SOC formation from gasoline emissions most likely dominates over diesel in the LA basin. This would have significant implications for our understanding of the on-road vehicle contribution to ambient aerosols and merits further study.


Journal of Geophysical Research | 2009

A novel radiocarbon dating technique applied to an ice core from the Alps indicating late Pleistocene ages

Theo M. Jenk; Sönke Szidat; David Bolius; Michael Sigl; H. W. Gäggeler; Lukas Wacker; Matthias Ruff; Carlo Barbante; Claude F. Boutron; Margit Schwikowski

Ice cores retrieved from high-altitude glaciers are important archives of past climatic and atmospheric conditions in midlatitude and tropical regions. Because of the specific flow behavior of ice, their age-depth relationship is nonlinear, preventing the application of common dating methods such as annual layer counting in the deepest and oldest part. Here we present a new approach and technique, allowing dating of any such ice core at arbitrary depth for the age range between ∼500 years B.P. and the late Pleistocene. This new, complementary dating tool has great potential for numerous ice core related paleoclimate studies since it allows improvement and extension of existing and future chronologies. Using small to ultrasmall sample size (100 μg > carbon content > 5 μg) accelerator mass spectrometry, we take advantage of the ice-included, water-insoluble organic carbon fraction of carbonaceous aerosols for radiocarbon (14C) dating. Analysis and dating of the bottom ice of the Colle Gnifetti glacier (Swiss-Italian Alps, 45°55′50″N, 7°52′33″E, 4455 m asl) has been successful in a first application, and the results revealed the core to cover most of the Holocene at the least with indication for late Pleistocene ice present at the very bottom.


Geology | 2012

Debris-flow–dependent variation of cosmogenically derived catchment-wide denudation rates

Florian Kober; Kristina Hippe; Bernhard Salcher; Susan Ivy-Ochs; Peter W. Kubik; Lukas Wacker; N. Hählen

Catchment-wide denudation rates (CWDRs) obtained from cosmogenic nuclides are an efficient way to determine geomorphic processes quantitatively in alpine mountain ranges over Holocene time scales. These rate estimations assume steady geomorphic processes. Here we use a time series (3 yr) in the Aare catchment (central Swiss Alps) to test the impact of spatially heterogeneous stochastic sediment supply on CWDRs. Our results show that low-frequency, high-magnitude debris-flow events significantly perturb cosmogenic nuclide ( 10 Be, 14 C) concentrations and thus CWDRs. The 10 Be concentrations decrease by a factor of two following debris-flow events, resulting in a doubling of inferred CWDRs. The variability indicates a clear time and source dependency on sediment supply, with restricted area-weighted mixing of sediment. Accordingly, in transient environments, it is critical to have an understanding of the history of geomorphic processes to derive meaningful CWDRs. We hypothesize that the size of debris flows, their connectivity with the trunk stream, and the ability of the system to sufficiently mix sediment from low- and high-order catchments control the magnitude of CWDR perturbations. We also determined in situ 14 C in a few samples. In conjunction with 10 Be, these data suggest partial storage for colluvium of a few thousand years within the catchment prior to debris-flow initiation.


Environmental Science & Technology | 2014

Radiocarbon-Based Source Apportionment of Carbonaceous Aerosols at a Regional Background Site on Hainan Island, South China

Yanlin Zhang; Jun Li; Gan Zhang; Peter Zotter; Rujin Huang; Jianhui Tang; Lukas Wacker; André S. H. Prévôt; Soenke Szidat

To assign fossil and nonfossil contributions to carbonaceous particles, radiocarbon ((14)C) measurements were performed on organic carbon (OC), elemental carbon (EC), and water-insoluble OC (WINSOC) of aerosol samples from a regional background site in South China under different seasonal conditions. The average contributions of fossil sources to EC, OC and WINSOC were 38 ± 11%, 19 ± 10%, and 17 ± 10%, respectively, indicating generally a dominance of nonfossil emissions. A higher contribution from fossil sources to EC (∼51%) and OC (∼30%) was observed for air-masses transported from Southeast China in fall, associated with large fossil-fuel combustion and vehicle emissions in highly urbanized regions of China. In contrast, an increase of the nonfossil contribution by 5-10% was observed during the periods with enhanced open biomass-burning activities in Southeast Asia or Southeast China. A modified EC tracer method was used to estimate the secondary organic carbon from fossil emissions by determining (14)C-derived fossil WINSOC and fossil EC. This approach indicates a dominating secondary component (70 ± 7%) of fossil OC. Furthermore, contributions of biogenic and biomass-burning emissions to contemporary OC were estimated to be 56 ± 16% and 44 ± 14%, respectively.


Radiocarbon | 2010

Alternative methods for cellulose preparation for AMS measurement.

Mojmir Nemec; Lukas Wacker; Irka Hajdas; H. W. Gäggeler

The main methods applied to clean plant material for radiocarbon dating are not compound-specific and generally remove only the easily exchangeable components by an acid-base-acid sequence and additional optional steps like Soxhlet extraction to remove resins and oxidative bleaching with NaClO2. The products are normally clean enough for standard 14C measurement, but in some cases it is desirable to have pure cellulose, which remains unchanged and immobile over longer time ranges, better representing the original plant material. In this work, 2 more compound-specific but still simple methods were tested to separate the cellulose from wood. The viscose method is based on the xanthification process used in the textile industry, where the alkali-cellulose with CS2 forms a soluble cellulose xanthate, which is then extracted and cellulose is recovered. The second procedure is based on the wood/cellulose dissolution in ionic liquid 1-butyl-3-methylimidazolium chloride [BMIM]Cl, when the dissolved cellulose could be precipitated again by simply adding a water-acetone mixture. This process was recently reported, but still not used in sample preparation procedures for 14C dating.


Radiocarbon | 2010

Optimization of the Graphitization Process at AGE-1

Mojmir Nemec; Lukas Wacker; H. W. Gäggeler

The reaction conditions for the graphitization of CO2 with hydrogen were optimized for a fast production of high-quality carbon samples for accelerator mass spectrometry (AMS) measurement. The iron catalyst in use is first oxidized by heating with air to remove possible carbon and other impurities and then after evacuation reduced back to iron with hydrogen in several flushing steps to remove any iron oxide. The optimum conditions for a fast graphitization reaction were experimentally determined by changing the reaction temperatures and the H2/CO2 ratio. The resulting graphite samples were measured by AMS to find the smallest isotopic changes (δ13C) at a minimum of molecular fragment formation (13CH current). The improvements are based on thermodynamic data and are explained with Baur-Glaessner diagrams.


Journal of Glaciology | 2009

Towards radiocarbon dating of ice cores

Michael Sigl; Theo M. Jenk; Thomas Kellerhals; Sönke Szidat; H. W. Gäggeler; Lukas Wacker; Hans-Arno Synal; Claude F. Boutron; Carlo Barbante; J. Gabrieli; Margit Schwikowski

A recently developed dating method for glacier ice, based on the analysis of radiocarbon in carbonaceous aerosol particles, is thoroughly investigated. We discuss the potential of this method to achieve a reliable dating using examples from a mid- and a low-latitude ice core. Two series of samples from Colle Gnifetti (4450 m a.s.l., Swiss Alps) and Nevado Illimani (6300 m a.s.l., Bolivian Andes) demonstrate that the 14C ages deduced from the water-insoluble organic carbon fraction represent the age of the ice. Sample sizes ranged between 7 and 100 μg carbon. For validation we compare our results with those from independent dating. This new method is thought to have major implications for dating non-polar ice cores in the future, as it provides complementary age information for time periods not accessible with common dating techniques.


Nature Communications | 2016

Radiocarbon constraints on the extent and evolution of the South Pacific glacial carbon pool

Thomas A Ronge; Ralf Tiedemann; Frank Lamy; Peter Köhler; Brent V. Alloway; R. De Pol-Holz; Katharina Pahnke; John Southon; Lukas Wacker

During the last deglaciation, the opposing patterns of atmospheric CO2 and radiocarbon activities (Δ14C) suggest the release of 14C-depleted CO2 from old carbon reservoirs. Although evidences point to the deep Pacific as a major reservoir of this 14C-depleted carbon, its extent and evolution still need to be constrained. Here we use sediment cores retrieved along a South Pacific transect to reconstruct the spatio-temporal evolution of Δ14C over the last 30,000 years. In ∼2,500–3,600 m water depth, we find 14C-depleted deep waters with a maximum glacial offset to atmospheric 14C (ΔΔ14C=−1,000‰). Using a box model, we test the hypothesis that these low values might have been caused by an interaction of aging and hydrothermal CO2 influx. We observe a rejuvenation of circumpolar deep waters synchronous and potentially contributing to the initial deglacial rise in atmospheric CO2. These findings constrain parts of the glacial carbon pool to the deep South Pacific.

Collaboration


Dive into the Lukas Wacker's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frank Lamy

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerhard Kuhn

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Southon

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Timothy I. Eglinton

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge