Lukas Y. Wick
Helmholtz Centre for Environmental Research - UFZ
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lukas Y. Wick.
Nature Reviews Microbiology | 2011
Hauke Harms; Dietmar Schlosser; Lukas Y. Wick
Fungi possess the biochemical and ecological capacity to degrade environmental organic chemicals and to decrease the risk associated with metals, metalloids and radionuclides, either by chemical modification or by influencing chemical bioavailability. Furthermore, the ability of these fungi to form extended mycelial networks, the low specificity of their catabolic enzymes and their independence from using pollutants as a growth substrate make these fungi well suited for bioremediation processes. However, despite dominating the living biomass in soil and being abundant in aqueous systems, fungi have not been exploited for the bioremediation of such environments. In this Review, we describe the metabolic and ecological features that make fungi suited for use in bioremediation and waste treatment processes, and discuss their potential for applications on the basis of these strengths.
Environmental Science & Technology | 2010
Luca Nizzetto; Matthew MacLeod; Katrine Borgå; Ana Cabrerizo; Jordi Dachs; Antonio Di Guardo; Davide Ghirardello; Kaj M. Hansen; Andrew Jarvis; Anders Lindroth; Bernard Ludwig; Dt Monteith; Judith A. Perlinger; Martin Scheringer; Luitgard Schwendenmann; Kirk T. Semple; Lukas Y. Wick; Gan Zhang; Kevin C. Jones
Understanding the legacy of persistent organic pollutants requires studying the transition from primary to secondary source control.
Cytometry Part A | 2007
Lei Shi; Susanne Günther; Thomas Hübschmann; Lukas Y. Wick; Hauke Harms; Susann Müller
Viability measurements of individual bacteria are applied in various scopes of research and industry using approaches where propidium iodide (PI) serves as dead cell indicator. The reliability of PI uptake as a cell viability indicator for dead (PI permeable) and viable (PI impermeable) bacteria was tested using two soil bacteria, the gram−Sphingomonas sp. LB126 and the gram+Mycobacterium frederiksbergense LB501T.
Biofouling | 2002
Edi Medilanski; Karin Kaufmann; Lukas Y. Wick; Oskar Wanner; Hauke Harms
Bacterial adhesion on stainless steel may cause problems such as microbially induced corrosion or represent a chronic source of microbial contamination. The investigation focussed on how the extent and patterns of four bacterial species comprising three different phyla and a broad variety of physicochemical characteristics was influenced by the surface topography of AISI 304 stainless steel. Five types of surface finish corresponding to roughness values R a between 0.03 and 0.89 w m were produced. Adhesion of all four bacteria was minimal at R a =0.16 w m, whereas smoother and rougher surfaces gave rise to more adhesion. This surface exhibited parallel scratches of 0.7 w m, in which a high proportion of bacteria of three of the strains aligned. Reduced overall adhesion was attributed to unfavorable interactions between this surface and bacteria oriented other than parallel to the scratches. Interaction energy calculations and considerations of micro-geometry confirmed this mechanism. Rougher surfaces exhibiting wider scratches allowed a higher fraction of bacteria to adhere in other orientations, whereas the orientation of cells adhered to the smoothest surface was completely random.
Applied Microbiology and Biotechnology | 2009
Carla C. C. R. de Carvalho; Lukas Y. Wick; Hermann J. Heipieper
Rhodococcus erythropolis was found to utilize C5 to C16 n-alkane hydrocarbons as sole source of carbon and energy when growing as planktonic or biofilm cells attached to polystyrene surfaces. Growth rates on even numbered were two- to threefold increased relatively to odd-numbered n-alkanes and depended on the chain length of the n-alkanes. C10-, C12-, C14-, and C16-n-alkanes gave rise to two- to fourfold increased maximal growth rates relative to C5- to C9-hydrocarbons. In reaction to the extremely poor water solubility of the n-alkanes, both planktonic and biofilm cells exhibited distinct adaptive changes. These included the production of surface active compounds and substrate-specific modifications of the physicochemical cell surface properties as expressed by the microbial adhesion to hydrocarbon- and contact angle-based hydrophobicity, as well as the zeta potential of the cells. By contrast, n-alkane-specific alterations of the cellular membrane composition were less distinct. The specificity of the observed autecological changes suggest that R. erythropolis cells may be used in the development and application of sound biocatalytic processes using n-alkanes as substrates or substrate reservoirs or for target-specific bioremediation of oils and combustibles, respectively.
Applied and Environmental Microbiology | 2003
Lukas Y. Wick; Natacha Pasche; Stefano M. Bernasconi; Oliver Pelz; Hauke Harms
ABSTRACT Stable carbon isotope analysis of biomass and analyses of phospholipid fatty acids (PLFA), glycolipid fatty acids (GLFA), and mycolic acids were used to characterize mixed-substrate utilization by Mycobacterium frederiksbergense LB501T under various substrate regimens. The distinct 13C contents of anthracene and glucose as representatives of typical hydrophobic pollutants and naturally occurring organic compounds, respectively, were monitored during formation into biomass and used to quantify the relative contributions of the two carbon sources to biomass formation. Moreover, the influence of mixed-substrate utilization on PLFA, GLFA, and mycolic acid profiles and cell surface hydrophobicity was investigated. Results revealed that M. frederiksbergense LB501T degrades anthracene and forms biomass from it even in the presence of more readily available dissolved glucose. The relative ratios of straight-chain saturated PLFA to the corresponding unsaturated PLFA and the total fraction of saturated cyclopropyl-branched PLFA of M. frederiksbergense LB501T depended on the carbon source and the various rates of addition of mixed substrates, whereas no such trend was observed with GLFA. Higher proportions of anthracene in the carbon source mixture led to higher cell surface hydrophobicities and more-hydrophobic mycolic acids, which in turn appeared to be valuable indicators for substrate utilization by M. frederiksbergense LB501T. The capability of polycyclic aromatic hydrocarbon (PAH)-degrading bacteria to utilize readily available substrates besides the poorly available PAHs favors the buildup of PAH-degrading biomass. Feeding of supplementary carbon substrates may therefore promote bioremediation, provided that it sustains the pollutant-degrading population rather than other members of the microbial community.
Applied and Environmental Microbiology | 2012
Thomas Baumgarten; Stefanie Sperling; Jana Seifert; Martin von Bergen; Frank Steiniger; Lukas Y. Wick; Hermann J. Heipieper
ABSTRACT Among the adaptive responses of bacteria to rapid changes in environmental conditions, those of the cell envelope are known to be the most crucial. Therefore, several mechanisms with which bacteria change their cell surface and membranes in the presence of different environmental stresses have been elucidated. Among these mechanisms, the release of outer membrane vesicles (MV) in Gram-negative bacteria has attracted particular research interest because of its involvement in pathogenic processes, such as that of Pseudomonas aeruginosa biofilm formation in cystic fibrosis lungs. In this study, we investigated the role of MV formation as an adaptive response of Pseudomonas putida DOT-T1E to several environmental stress factors and correlated it to the formation of biofilms. In the presence of toxic concentrations of long-chain alcohols, under osmotic stress caused by NaCl, in the presence of EDTA, and after heat shock, cells of this strain released MV within 10 min in the presence of a stressor. The MV formed showed similar size and charge properties, as well as comparable compositions of proteins and fatty acids. MV release caused a significant increase in cell surface hydrophobicity, and an enhanced tendency to form biofilms was demonstrated in this study. Therefore, the release of MV as a stress response could be put in a physiological context.
Environmental Microbiology | 2009
Shoko Furuno; Katrin Päzolt; Cornelia Rabe; Thomas R. Neu; Hauke Harms; Lukas Y. Wick
Contaminant biodegradation in soil is frequently limited by hindered physical access of bacteria to the contaminants. In the frame of the development of novel bioremediation approaches based on ecological principles, we tested the hypothesis that fungal networks facilitate the movement of bacteria by providing continuous liquid films in which gradients of chemoattractants can form and chemotactic swimming can take place. Unlike bacteria, filamentous fungi spread with ease in water-unsaturated soil. In a simple laboratory model of a water-unsaturated environment, we studied the movement of polycyclic aromatic hydrocarbon-degrading Pseudomonas putida PpG7 (NAH7) along a mycelium of Pythium ultimum. Some undirected dispersal was observed in the absence of a chemoattractant or when the non-chemotactic derivative strain P. putida G7.C1 (pHG100) was used. The bacterial movement became fourfold more effective and clearly directed when the chemotactic wild type was used and salicylate was present as a chemoattractant. No dispersal of bacteria was found in the absence of the fungus. These findings point at a role of mycelia for the translocation of chemicals and microorganisms. The results suggest that fungi improve the accessibility of contaminants in water-unsaturated environments.
Journal of Biological Chemistry | 2012
Katharina Flach; Isabel Hilbrich; Andrea Schiffmann; Ulrich Gärtner; Martin Krüger; Marion Leonhardt; Hanka Waschipky; Lukas Y. Wick; Thomas Arendt; Max Holzer
Background: Tau aggregation is a multistep process. The identity of Tau species compromising cell viability remains largely unknown. Results: Analysis of Tau aggregation dynamic identifies oligomeric Tau aggregates as toxic species that impair viability. Conclusion: Membrane leakage induced by oligomeric Tau is a mechanism for toxicity. Significance: Tau belongs to the class of amyloidogenic proteins that share a common toxicity-mediating mechanism. The microtubule-associated protein Tau is mainly expressed in neurons, where it binds and stabilizes microtubules. In Alzheimer disease and other tauopathies, Tau protein has a reduced affinity toward microtubules. As a consequence, Tau protein detaches from microtubules and eventually aggregates into β-sheet-containing filaments. The fibrillization of monomeric Tau to filaments is a multistep process that involves the formation of various aggregates, including spherical and protofibrillar oligomers. Previous concepts, primarily developed for Aβ and α-synuclein, propose these oligomeric intermediates as the primary cytotoxic species mediating their deleterious effects through membrane permeabilization. In the present study, we thus analyzed whether this concept can also be applied to Tau protein. To this end, viability and membrane integrity were assessed on SH-SY5Y neuroblastoma cells and artificial phospholipid vesicles, treated with Tau monomers, Tau aggregation intermediates, or Tau fibrils. Our findings suggest that oligomeric Tau aggregation intermediates are the most toxic compounds of Tau fibrillogenesis, which effectively decrease cell viability and increase phospholipid vesicle leakage. Our data integrate Tau protein into the class of amyloidogenic proteins and enforce the hypothesis of a common toxicity-mediating mechanism for amyloidogenic proteins.
Applied and Environmental Microbiology | 2006
Grit Neumann; Sjef Cornelissen; Frank van Breukelen; Steffi Hunger; Holger Lippold; Norbert Loffhagen; Lukas Y. Wick; Hermann J. Heipieper
ABSTRACT The solvent-tolerant strain Pseudomonas putida DOT-T1E was grown in batch fermentations in a 5-liter bioreactor in the presence and absence of 10% (vol/vol) of the organic solvent 1-decanol. The growth behavior and cellular energetics, such as the cellular ATP content and the energy charge, as well as the cell surface hydrophobicity and charge, were measured in cells growing in the presence and absence of 1-decanol. Although the cells growing in the presence of 1-decanol showed an about 10% reduced growth rate and a 48% reduced growth yield, no significant differences were measured either in the ATP and potassium contents or in the energy charge, indicating that the cells adapted completely at the levels of membrane permeability and energetics. Although the bacteria needed additional energy for adaptation to the presence of the solvent, they were able to maintain or activate electron transport phosphorylation, allowing homeostasis of the ATP level and energy charge in the presence of the solvent, at the price of a reduced growth yield. On the other hand, significantly enhanced cell hydrophobicities and more negative cell surface charges were observed in cells grown in the presence of 1-decanol. Both reactions occurred within about 10 min after the addition of the solvent and were significantly different after killing of the cells with toxic concentrations of HgCl2. This adaptation of the surface properties of the bacterium to the presence of solvents seems to be very similar to previously observed reactions on the level of lipopolysaccharides, with which bacteria adapt to environmental stresses, such as heat shock, antibiotics, or low oxygen content. The results give clear physiological indications that the process with P. putida DOT-T1E as the biocatalyst and 1-decanol as the solvent is a stable system for two-phase biotransformations that will allow the production of fine chemicals in economically sound amounts.