Luke Beesley
James Hutton Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Luke Beesley.
Environmental Pollution | 2011
Luke Beesley; Eduardo Moreno-Jiménez; Jose L. Gomez-Eyles; Eva Harris; Brett Robinson; Tom Sizmur
Biochars are biological residues combusted under low oxygen conditions, resulting in a porous, low density carbon rich material. Their large surface areas and cation exchange capacities, determined to a large extent by source materials and pyrolysis temperatures, enables enhanced sorption of both organic and inorganic contaminants to their surfaces, reducing pollutant mobility when amending contaminated soils. Liming effects or release of carbon into soil solution may increase arsenic mobility, whilst low capital but enhanced retention of plant nutrients can restrict revegetation on degraded soils amended only with biochars; the combination of composts, manures and other amendments with biochars could be their most effective deployment to soils requiring stabilisation by revegetation. Specific mechanisms of contaminant-biochar retention and release over time and the environmental impact of biochar amendments on soil organisms remain somewhat unclear but must be investigated to ensure that the management of environmental pollution coincides with ecological sustainability.
Environmental Pollution | 2010
Luke Beesley; Eduardo Moreno-Jiménez; Jose L. Gomez-Eyles
Applying amendments to multi-element contaminated soils can have contradictory effects on the mobility, bioavailability and toxicity of specific elements, depending on the amendment. Trace elements and PAHs were monitored in a contaminated soil amended with biochar and greenwaste compost over 60 days field exposure, after which phytotoxicity was assessed by a simple bio-indicator test. Copper and As concentrations in soil pore water increased more than 30 fold after adding both amendments, associated with significant increases in dissolved organic carbon and pH, whereas Zn and Cd significantly decreased. Biochar was most effective, resulting in a 10 fold decrease of Cd in pore water and a resultant reduction in phytotoxicity. Concentrations of PAHs were also reduced by biochar, with greater than 50% decreases of the heavier, more toxicologically relevant PAHs. The results highlight the potential of biochar for contaminated land remediation.
Environmental Pollution | 2011
Luke Beesley; Marta Marmiroli
Water-soluble inorganic pollutants may constitute an environmental toxicity problem if their movement through soils and potential transfer to plants or groundwater is not arrested. The capability of biochar to immobilise and retain arsenic (As), cadmium (Cd) and zinc (Zn) from a multi-element contaminated sediment-derived soil was explored by a column leaching experiment and scanning electron microanalysis (SEM/EDX). Sorption of Cd and Zn to biochars surfaces assisted a 300 and 45-fold reduction in their leachate concentrations, respectively. Retention of both metals was not affected by considerable leaching of water-soluble carbon from biochar, and could not be reversed following subsequent leaching of the sorbant biochar with water at pH 5.5. Weakly water-soluble As was also retained on biochars surface but leachate concentrations did not duly decline. It is concluded that biochar can rapidly reduce the mobility of selected contaminants in this polluted soil system, with especially encouraging results for Cd.
Journal of Hazardous Materials | 2011
Nadia Karami; Rafael Clemente; Eduardo Moreno-Jiménez; Nicholas W. Lepp; Luke Beesley
Green waste compost and biochar amendments were assessed for their assistance in regulating the mobility of copper (Cu) and lead (Pb) and the resultant uptake of these metals into vegetation. The amendments were mixed with a heavily Cu and Pb contaminated soil (600 and 21,000 mg kg(-1), respectively) from a former copper mine in Cheshire (UK), on a volume basis both singly and in combination in greenhouse pot trials. Ryegrass (Lolium perenne L. var. Cadix) was grown for the following 4 months during which biomass, metals in soil pore water and plant uptake were measured in three consecutive harvests. Very high Pb concentrations in pore water from untreated soil (>80 mg l(-1)) were reduced furthest by compost amendment (<5 mg l(-1)) whereas biochar was the more effective treatment at reducing pore water Cu concentrations. Duly, ryegrass shoot Cu levels were reduced and large, significant reductions in shoot Pb levels were observed after biochar and compost amendments, respectively during successive harvests. However, because green waste compost singly and in combination with biochar vividly enhanced biomass yields, harvestable amounts of Pb were only significantly reduced by the compost amendment which had reduced shoot Pb levels furthest. The low biomass of ryegrass with biochar amendment meant that this was the only amendment which did not significantly increase harvestable amounts of Cu. Therefore the two amendments have opposing metal specific suitability for treating this contaminated soil regarding whether it is a maximum reduction in plant tissue metal concentration or a maximum reduction in harvestable amount of metal that is required.
Environmental Pollution | 2014
Luke Beesley; Onyeka S. Inneh; Gareth J. Norton; Eduardo Moreno-Jiménez; Tania Pardo; Rafael Clemente; Julian J.C. Dawson
Amending contaminated soils with organic wastes can influence trace element mobility and toxicity. Soluble concentrations of metals and arsenic were measured in pore water and aqueous soil extracts following the amendment of a heavily contaminated mine soil with compost and biochar (10% v:v) in a pot experiment. Speciation modelling and toxicity assays (Vibrio fischeri luminescence inhibition and Lolium perenne germination) were performed to discriminate mechanisms controlling metal mobility and assess toxicity risk thereafter. Biochar reduced free metal concentrations furthest but dissolved organic carbon primarily controlled metal mobility after compost amendment. Individually, both amendments induced considerable solubilisation of arsenic to pore water (>2500 μg l(-1)) related to pH and soluble phosphate but combining amendments most effectively reduced toxicity due to simultaneous reductions in extractable metals and increases in soluble nutrients (P). Thus the measure-monitor-model approach taken determined that combining the amendments was most effective at mitigating attendant toxicity risk.
Environmental Pollution | 2010
Luke Beesley; Eduardo Moreno-Jiménez; Rafael Clemente; Nicholas W. Lepp; Nicholas M. Dickinson
Three methods for predicting element mobility in soils have been applied to an iron-rich soil, contaminated with arsenic, cadmium and zinc. Soils were collected from 0 to 30 cm, 30 to 70 cm and 70 to 100 cm depths in the field and soil pore water was collected at different depths from an adjacent 100 cm deep trench. Sequential extraction and a column leaching test in the laboratory were compared to element concentrations in pore water sampled directly from the field. Arsenic showed low extractability, low leachability and occurred at low concentrations in pore water samples. Cadmium and zinc were more labile and present in higher concentrations in pore water, increasing with soil depth. Pore water sampling gave the best indication of short term element mobility when field conditions were taken into account, but further extraction and leaching procedures produced a fuller picture of element dynamics, revealing highly labile Cd deep in the soil profile.
Journal of Environmental Management | 2015
A.P. Puga; C.A. Abreu; Leônidas Carrijo Azevedo Melo; Luke Beesley
Heavy metals in soil are naturally occurring but may be enhanced by anthropogenic activities such as mining. Bio-accumulation of heavy metals in the food chain, following their uptake to plants can increase the ecotoxicological risks associated with remediation of contaminated soils using plants. In the current experiment sugar cane straw-derived biochar (BC), produced at 700 °C, was applied to a heavy metal contaminated mine soil at 1.5%, 3.0% and 5.0% (w/w). Jack bean (Canavalia ensiformis) and Mucuna aterrima were grown in pots containing soil and biochar mixtures, and control pots without biochar. Pore water was sampled from each pot to confirm the effects of biochar on metal solubility, whilst soils were analyzed by DTPA extraction to confirm available metal concentrations. Leaves were sampled for SEM analysis to detect possible morphological and anatomical changes. The application of BC decreased the available concentrations of Cd, Pb and Zn in 56, 50 and 54% respectively, in the mine contaminated soil leading to a consistent reduction in the concentration of Zn in the pore water (1st collect: 99 to 39 μg L(-1), 2nd: 97 to 57 μg L(-1) and 3rd: 71 to 12 μg L(-1)). The application of BC reduced the uptake of Cd, Pb and Zn by plants with the jack bean translocating high proportions of metals (especially Cd) to shoots. Metals were also taken up by Mucuna aterrima but translocation to shoot was more limited than for jack bean. There were no differences in the internal structures of leaves observed by scanning electron microscopy. This study indicates that biochar application during mine soil remediation reduce plant concentrations of potential toxic metals.
Environmental Pollution | 2011
Eduardo Moreno-Jiménez; Luke Beesley; Nicholas W. Lepp; Nicholas M. Dickinson; William Hartley; Rafael Clemente
Monitoring soil pollution is a key aspect in sustainable management of contaminated land but there is often debate over what should be monitored to assess ecological risk. Soil pore water, containing the most labile pollutant fraction in soils, can be easily collected in situ offering a routine way to monitor this risk. We present a compilation of data on concentration of trace elements (As, Cd, Cu, Pb, and Zn) in soil pore water collected in field conditions from a range of polluted and non-polluted soils in Spain and the UK during single and repeated monitoring, and propose a simple eco-toxicity test using this media. Sufficient pore water could be extracted for analysis both under semi-arid and temperate conditions, and eco-toxicity comparisons could be effectively made between polluted and non-polluted soils. We propose that in-situ pore water extraction could enhance the realism of risk assessment at some contaminated sites.
Journal of Environmental Management | 2012
Luke Beesley
Carbon storage (carbon density; kg C m(2)), concentrations of dissolved organic carbon (DOC) in soil pore water and soil respiration (g C m(2) yr(-1)) were measured in a 35 year old urban lawn soil amended with a surface mulch application of green waste compost and compared to those in two newly created urban soils, manufactured by mixing different volumes of green waste compost with existing soils or soil forming materials. The aim was to determine C storage and calculate annual fluxes in two newly created urban soils compared to an existing urban soil, to establish the potential for maintaining and building carbon storage. In the lawn soil, organic carbon storage was largely limited to the upper 15 cm of the soil, with material below 30 cm consisting of substantial amounts of alkaline building debris augmenting sandstone parent material. Leaching of DOC directly from the surface applied compost mulch amendment was readily mobile within the upper 15 cm of soil beneath, but not to 30 cm depth, indicating limited vertical redistribution of the soluble organic C fraction to the deeper, technic horizons. Only a very small proportion of annual C losses were attributable to DOC export (≤ 0.5%) whilst a much greater amount was accounted for by soil respiration (∼20%). In the two newly created urban soils, ≤ 30% additions of compost mixed with existing soil forming materials trebled C densities from <2 to 6 kg total carbon (TC) m(2), surpassing those of the existing lawn soil (≤ 5 kg TC m(2)). Adding 45% compost served only to reduce bulk density so that C densities did not increase further until >50% compost was applied. Combined increases in soil respiration losses and DOC leaching associated with higher compost application rates suggested that volumes of ∼30% compost were altogether optimal for sustainable C storage whilst minimising annual losses. Thus repeated applications of small amounts, rather than single applications of large amounts of green waste compost could be most effective at maintaining and building C storage in urban soils.
Journal of Soils and Sediments | 2016
Leônidas Carrijo Azevedo Melo; Aline Peregrina Puga; Aline Renée Coscione; Luke Beesley; Cleide Aparecida de Abreu; Otávio Antonio de Camargo
PurposeBiochars may enhance the retention capacity of metals in soils, especially in highly weathered tropical soil whose low cation exchange capacity renders heavy metals mobile, and thus be able to leach from soils. We evaluated the effect of sugarcane-straw-derived biochar on sorption and desorption of Cd(II) and Zn(II) in two tropical soils in particular to distinguish primary and secondary mechanisms of metal retention.Material and methodsTo test the efficiency of biochar to retain heavy metals, sugarcane-straw-derived biochar was mixed with a clayey Oxisol and an Entisol both from the state of Sao Paulo, Brazil, in batch testing to obtain sorption-desorption isotherms of Cd(II) and Zn(II) and measure the release/displacement of cations (Ca2+ and Mg2+) or precipitation with phosphate during the sorption process.Results and discussionBiochar increased the sorption (including adsorption and precipitation) of both metals in both soils but that most sorption reactions were reversible under buffer acidic conditions, due to dissolution of precipitates in low pH values (<4.9). Exchange of Cd or Zn with Ca and Mg from the biochar was found to play a minor role on the retention mechanism, whereas surface precipitation (mainly in the Entisol) of the metals (e.g. with phosphate) was likely to be the main sorption mechanism.ConclusionsApplication of sugarcane-straw-derived biochar to heavy-metal-contaminated tropical soils seems justified because of its sorptive capacity for Cd and Zn. However, binding reactions on surfaces were reversible, mainly for Cd(II), resulting in the likelihood that repeat applications of biochar would be required to maintain reduced soil solution concentrations of Cd and Zn over time, thus avoiding phytotoxicity and associated environmental risks.