Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luke Boorman is active.

Publication


Featured researches published by Luke Boorman.


The Journal of Neuroscience | 2010

Negative Blood Oxygen Level Dependence in the Rat:A Model for Investigating the Role of Suppression in Neurovascular Coupling

Luke Boorman; Aneurin J. Kennerley; David Johnston; Myles Jones; Ying Zheng; Peter Redgrave; Jason Berwick

Modern neuroimaging techniques rely on neurovascular coupling to show regions of increased brain activation. However, little is known of the neurovascular coupling relationships that exist for inhibitory signals. To address this issue directly we developed a preparation to investigate the signal sources of one of these proposed inhibitory neurovascular signals, the negative blood oxygen level-dependent (BOLD) response (NBR), in rat somatosensory cortex. We found a reliable NBR measured in rat somatosensory cortex in response to unilateral electrical whisker stimulation, which was located in deeper cortical layers relative to the positive BOLD response. Separate optical measurements (two-dimensional optical imaging spectroscopy and laser Doppler flowmetry) revealed that the NBR was a result of decreased blood volume and flow and increased levels of deoxyhemoglobin. Neural activity in the NBR region, measured by multichannel electrodes, varied considerably as a function of cortical depth. There was a decrease in neuronal activity in deep cortical laminae. After cessation of whisker stimulation there was a large increase in neural activity above baseline. Both the decrease in neuronal activity and increase above baseline after stimulation cessation correlated well with the simultaneous measurement of blood flow suggesting that the NBR is related to decreases in neural activity in deep cortical layers. Interestingly, the magnitude of the neural decrease was largest in regions showing stimulus-evoked positive BOLD responses. Since a similar type of neural suppression in surround regions was associated with a negative BOLD signal, the increased levels of suppression in positive BOLD regions could importantly moderate the size of the observed BOLD response.


Journal of Cerebral Blood Flow and Metabolism | 2012

Early and late stimulus-evoked cortical hemodynamic responses provide insight into the neurogenic nature of neurovascular coupling.

Aneurin J. Kennerley; Sam Harris; Michael Bruyns-Haylett; Luke Boorman; Ying Zheng; Myles Jones; Jason Berwick

Understanding neurovascular coupling is a prerequisite for the interpretation of results obtained from modern neuroimaging techniques. This study investigated the hemodynamic and neural responses in rat somatosensory cortex elicited by 16 seconds electrical whisker stimuli. Hemodynamics were measured by optical imaging spectroscopy and neural activity by multichannel electrophysiology. Previous studies have suggested that the whisker-evoked hemodynamic response contains two mechanisms, a transient ‘backwards’ dilation of the middle cerebral artery, followed by an increase in blood volume localized to the site of neural activity. To distinguish between the mechanisms responsible for these aspects of the response, we presented whisker stimuli during normocapnia (‘control’), and during a high level of hypercapnia. Hypercapnia was used to ‘predilate’ arteries and thus possibly ‘inhibit’ aspects of the response related to the ‘early’ mechanism. Indeed, hemodynamic data suggested that the transient stimulus-evoked response was absent under hypercapnia. However, evoked neural responses were also altered during hypercapnia and convolution of the neural responses from both the normocapnic and hypercapnic conditions with a canonical impulse response function, suggested that neurovascular coupling was similar in both conditions. Although data did not clearly dissociate early and late vascular responses, they suggest that the neurovascular coupling relationship is neurogenic in origin.


European Journal of Neuroscience | 2013

The resting-state neurovascular coupling relationship: rapid changes in spontaneous neural activity in the somatosensory cortex are associated with haemodynamic fluctuations that resemble stimulus-evoked haemodynamics.

Michael Bruyns-Haylett; Sam Harris; Luke Boorman; Ying Zheng; Jason Berwick; Myles Jones

Although promise exists for patterns of resting‐state blood oxygen level‐dependent (BOLD) functional magnetic resonance imaging (fMRI) brain connectivity to be used as biomarkers of early brain pathology, a full understanding of the nature of the relationship between neural activity and spontaneous fMRI BOLD fluctuations is required before such data can be correctly interpreted. To investigate this issue, we combined electrophysiological recordings of rapid changes in multi‐laminar local field potentials from the somatosensory cortex of anaesthetized rats with concurrent two‐dimensional optical imaging spectroscopy measurements of resting‐state haemodynamics that underlie fluctuations in the BOLD fMRI signal. After neural ‘events’ were identified, their time points served to indicate the start of an epoch in the accompanying haemodynamic fluctuations. Multiple epochs for both neural ‘events’ and the accompanying haemodynamic fluctuations were averaged. We found that the averaged epochs of resting‐state haemodynamic fluctuations taken after neural ‘events’ closely resembled the temporal profile of stimulus‐evoked cortical haemodynamics. Furthermore, we were able to demonstrate that averaged epochs of resting‐state haemodynamic fluctuations resembling the temporal profile of stimulus‐evoked haemodynamics could also be found after peaks in neural activity filtered into specific electroencephalographic frequency bands (theta, alpha, beta, and gamma). This technique allows investigation of resting‐state neurovascular coupling using methodologies that are directly comparable to that developed for investigating stimulus‐evoked neurovascular responses.


NeuroImage | 2012

Is optical imaging spectroscopy a viable measurement technique for the investigation of the negative BOLD phenomenon? A concurrent optical imaging spectroscopy and fMRI study at high field (7 T)

Aneurin J. Kennerley; John E. W. Mayhew; Luke Boorman; Ying Zheng; Jason Berwick

Traditionally functional magnetic resonance imaging (fMRI) has been used to map activity in the human brain by measuring increases in the Blood Oxygenation Level Dependent (BOLD) signal. Often accompanying positive BOLD fMRI signal changes are sustained negative signal changes. Previous studies investigating the neurovascular coupling mechanisms of the negative BOLD phenomenon have used concurrent 2D-optical imaging spectroscopy (2D-OIS) and electrophysiology (Boorman et al., 2010). These experiments suggested that the negative BOLD signal in response to whisker stimulation was a result of an increase in deoxy-haemoglobin and reduced multi-unit activity in the deep cortical layers. However, Boorman et al. (2010) did not measure the BOLD and haemodynamic response concurrently and so could not quantitatively compare either the spatial maps or the 2D-OIS and fMRI time series directly. Furthermore their study utilised a homogeneous tissue model in which is predominantly sensitive to haemodynamic changes in more superficial layers. Here we test whether the 2D-OIS technique is appropriate for studies of negative BOLD. We used concurrent fMRI with 2D-OIS techniques for the investigation of the haemodynamics underlying the negative BOLD at 7 Tesla. We investigated whether optical methods could be used to accurately map and measure the negative BOLD phenomenon by using 2D-OIS haemodynamic data to derive predictions from a biophysical model of BOLD signal changes. We showed that despite the deep cortical origin of the negative BOLD response, if an appropriate heterogeneous tissue model is used in the spectroscopic analysis then 2D-OIS can be used to investigate the negative BOLD phenomenon.


The Journal of Neuroscience | 2015

Long-Latency Reductions in Gamma Power Predict Hemodynamic Changes That Underlie the Negative BOLD Signal

Luke Boorman; Samuel Harris; Michael Bruyns-Haylett; Aneurin J. Kennerley; Ying Zheng; Chris Martin; Myles Jones; Peter Redgrave; Jason Berwick

Studies that use prolonged periods of sensory stimulation report associations between regional reductions in neural activity and negative blood oxygenation level-dependent (BOLD) signaling. However, the neural generators of the negative BOLD response remain to be characterized. Here, we use single-impulse electrical stimulation of the whisker pad in the anesthetized rat to identify components of the neural response that are related to “negative” hemodynamic changes in the brain. Laminar multiunit activity and local field potential recordings of neural activity were performed concurrently with two-dimensional optical imaging spectroscopy measuring hemodynamic changes. Repeated measurements over multiple stimulation trials revealed significant variations in neural responses across session and animal datasets. Within this variation, we found robust long-latency decreases (300 and 2000 ms after stimulus presentation) in gamma-band power (30–80 Hz) in the middle-superficial cortical layers in regions surrounding the activated whisker barrel cortex. This reduction in gamma frequency activity was associated with corresponding decreases in the hemodynamic responses that drive the negative BOLD signal. These findings suggest a close relationship between BOLD responses and neural events that operate over time scales that outlast the initiating sensory stimulus, and provide important insights into the neurophysiological basis of negative neuroimaging signals.


robotics and biomimetics | 2016

An integrated probabilistic framework for robot perception, learning and memory

Uriel Martinez-Hernandez; Andreas C. Damianou; Daniel Camilleri; Luke Boorman; Neil D. Lawrence; Tony J. Prescott

Learning and perception from multiple sensory modalities are crucial processes for the development of intelligent systems capable of interacting with humans. We present an integrated probabilistic framework for perception, learning and memory in robotics. The core component of our framework is a computational Synthetic Autobiographical Memory model which uses Gaussian Processes as a foundation and mimics the functionalities of human memory. Our memory model, that operates via a principled Bayesian probabilistic framework, is capable of receiving and integrating data flows from multiple sensory modalities, which are combined to improve perception and understanding of the surrounding environment. To validate the model, we implemented our framework in the iCub humanoid robotic, which was able to learn and recognise human faces, arm movements and touch gestures through interaction with people. Results demonstrate the flexibility of our method to successfully integrate multiple sensory inputs, for accurate learning and recognition. Thus, our integrated probabilistic framework offers a promising core technology for robust intelligent systems, which are able to perceive, learn and interact with people and their environments.


NeuroImage | 2014

Coupling between gamma-band power and cerebral blood volume during recurrent acute neocortical seizures.

Samuel Harris; Hongtao Ma; Mingrui Zhao; Luke Boorman; Ying Zheng; Aneurin J. Kennerley; Michael Bruyns-Haylett; Paul G. Overton; Jason Berwick; Theodore H. Schwartz

Characterization of neural and hemodynamic biomarkers of epileptic activity that can be measured using non-invasive techniques is fundamental to the accurate identification of the epileptogenic zone (EZ) in the clinical setting. Recently, oscillations at gamma-band frequencies and above (> 30 Hz) have been suggested to provide valuable localizing information of the EZ and track cortical activation associated with epileptogenic processes. Although a tight coupling between gamma-band activity and hemodynamic-based signals has been consistently demonstrated in non-pathological conditions, very little is known about whether such a relationship is maintained in epilepsy and the laminar etiology of these signals. Confirmation of this relationship may elucidate the underpinnings of perfusion-based signals in epilepsy and the potential value of localizing the EZ using hemodynamic correlates of pathological rhythms. Here, we use concurrent multi-depth electrophysiology and 2-dimensional optical imaging spectroscopy to examine the coupling between multi-band neural activity and cerebral blood volume (CBV) during recurrent acute focal neocortical seizures in the urethane-anesthetized rat. We show a powerful correlation between gamma-band power (25–90 Hz) and CBV across cortical laminae, in particular layer 5, and a close association between gamma measures and multi-unit activity (MUA). Our findings provide insights into the laminar electrophysiological basis of perfusion-based imaging signals in the epileptic state and may have implications for further research using non-invasive multi-modal techniques to localize epileptogenic tissue.


Epilepsia | 2014

Contralateral dissociation between neural activity and cerebral blood volume during recurrent acute focal neocortical seizures

Sam Harris; Luke Boorman; Michael Bruyns-Haylett; Aneurin J. Kennerley; Hongtao Ma; Mingrui Zhao; Paul G. Overton; Theodore H. Schwartz; Jason Berwick

Whether epileptic events disrupt normal neurovascular coupling mechanisms locally or remotely is unclear. We sought to investigate neurovascular coupling in an acute model of focal neocortical epilepsy, both within the seizure onset zone and in contralateral homotopic cortex.


Scientific Reports | 2015

Comparison of stimulus-evoked cerebral hemodynamics in the awake mouse and under a novel anesthetic regime

Paul S. Sharp; Kira Shaw; Luke Boorman; Samuel Harris; Aneurin J. Kennerley; Mimoun Azzouz; Jason Berwick

Neural activity is closely followed by a localised change in cerebral blood flow, a process termed neurovascular coupling. These hemodynamic changes form the basis of contrast in functional magnetic resonance imaging (fMRI) and are used as a correlate for neural activity. Anesthesia is widely employed in animal fMRI and neurovascular studies, however anesthetics are known to profoundly affect neural and vascular physiology, particularly in mice. Therefore, we investigated the efficacy of a novel ‘modular’ anesthesia that combined injectable (fentanyl-fluanisone/midazolam) and volatile (isoflurane) anesthetics in mice. To characterize sensory-evoked cortical hemodynamic responses, we used optical imaging spectroscopy to produce functional maps of changes in tissue oxygenation and blood volume in response to mechanical whisker stimulation. Following fine-tuning of the anesthetic regime, stimulation elicited large and robust hemodynamic responses in the somatosensory cortex, characterized by fast arterial activation, increases in total and oxygenated hemoglobin, and decreases in deoxygenated hemoglobin. Overall, the magnitude and speed of evoked hemodynamic responses under anesthesia resembled those in the awake state, indicating that the novel anesthetic combination significantly minimizes the impact of anesthesia. Our findings have broad implications for both neurovascular research and longitudinal fMRI studies that increasingly require the use of genetically engineered mice.


Journal of Cerebral Blood Flow and Metabolism | 2013

The effects of focal epileptic activity on regional sensory-evoked neurovascular coupling and postictal modulation of bilateral sensory processing.

Sam Harris; Michael Bruyns-Haylett; Aneurin J. Kennerley; Luke Boorman; Paul G. Overton; Hongtao Ma; Mingrui Zhao; Theodore H. Schwartz; Jason Berwick

While it is known that cortical sensory dysfunction may occur in focal neocortical epilepsy, it is unknown whether sensory-evoked neurovascular coupling is also disrupted during epileptiform activity. Addressing this open question may help to elucidate both the effects of focal neocortical epilepsy on sensory responses and the neurovascular characteristics of epileptogenic regions in sensory cortex. We therefore examined bilateral sensory-evoked neurovascular responses before, during, and after 4-aminopyridine (4-AP, 15 mmol/L, 1 μL) induced focal neocortical seizures in right vibrissal cortex of the rat. Stimulation consisted of electrical pulse trains (16 seconds, 5 Hz, 1.2 mA) presented to the mystacial pad. Consequent current-source density neural responses and epileptic activity in both cortices and across laminae were recorded via two 16-channel microelectrodes bilaterally implanted in vibrissal cortices. Concurrent two-dimensional optical imaging spectroscopy was used to produce spatiotemporal maps of total, oxy-, and deoxy-hemoglobin concentration. Compared with control, sensory-evoked neurovascular coupling was altered during ictal activity, but conserved postictally in both ipsilateral and contralateral vibrissal cortices, despite neurovascular responses being significantly reduced in the former, and enhanced in the latter. Our results provide insights into sensory-evoked neurovascular dynamics and coupling in epilepsy, and may have implications for the localization of epileptogenic foci and neighboring eloquent cortex.

Collaboration


Dive into the Luke Boorman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ying Zheng

University of Sheffield

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James Law

University of Sheffield

View shared research outputs
Researchain Logo
Decentralizing Knowledge