Luke Holman
Australian National University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Luke Holman.
PLOS Biology | 2015
Megan L. Head; Luke Holman; Robert Lanfear; Andrew T. Kahn; Michael D. Jennions
A focus on novel, confirmatory, and statistically significant results leads to substantial bias in the scientific literature. One type of bias, known as “p-hacking,” occurs when researchers collect or select data or statistical analyses until nonsignificant results become significant. Here, we use text-mining to demonstrate that p-hacking is widespread throughout science. We then illustrate how one can test for p-hacking when performing a meta-analysis and show that, while p-hacking is probably common, its effect seems to be weak relative to the real effect sizes being measured. This result suggests that p-hacking probably does not drastically alter scientific consensuses drawn from meta-analyses.
Science | 2014
Annette Van Oystaeyen; Ricardo Caliari Oliveira; Luke Holman; Jelle van Zweden; Carmen Romero; Cintia Akemi Oi; Patrizia d'Ettorre; Mohammadreza Khalesi; Johan Billen; Felix L. Wäckers; Jocelyn G. Millar; Tom Wenseleers
Long Live the Queen Eusociality is often considered to have arisen, at least in part, due to the inclusive fitness that workers gain through helping their queen sister to raise her offspring. Van Oystaeyen et al. (p. 287; see the Perspective by Chapuisat) characterized the sterility-inducing queen pheromone across three distantly related eusocial hymenopterans (a wasp, a bumblebee, and a desert ant) and synthesized data across 69 other species. Queen pheromones appear to be remarkably conserved, which suggests that reproductive manipulation has ancient roots. Social insect queens use an ancient, evolutionarily conserved class of pheromones to prevent worker reproduction. [Also see Perspective by Chapuisat] A major evolutionary transition to eusociality with reproductive division of labor between queens and workers has arisen independently at least 10 times in the ants, bees, and wasps. Pheromones produced by queens are thought to play a key role in regulating this complex social system, but their evolutionary history remains unknown. Here, we identify the first sterility-inducing queen pheromones in a wasp, bumblebee, and desert ant and synthesize existing data on compounds that characterize female fecundity in 64 species of social insects. Our results show that queen pheromones are strikingly conserved across at least three independent origins of eusociality, with wasps, ants, and some bees all appearing to use nonvolatile, saturated hydrocarbons to advertise fecundity and/or suppress worker reproduction. These results suggest that queen pheromones evolved from conserved signals of solitary ancestors.
Proceedings of the Royal Society of London Series B: Biological Sciences | 2010
Luke Holman; Charlotte G. Jørgensen; John Nielsen; Patrizia d'Ettorre
The selective forces that shape and maintain eusocial societies are an enduring puzzle in evolutionary biology. Ordinarily sterile workers can usually reproduce given the right conditions, so the factors regulating reproductive division of labour may provide insight into why eusociality has persisted over evolutionary time. Queen-produced pheromones that affect worker reproduction have been implicated in diverse taxa, including ants, termites, wasps and possibly mole rats, but to date have only been definitively identified in the honeybee. Using the black garden ant Lasius niger, we isolate the first sterility-regulating ant queen pheromone. The pheromone is a cuticular hydrocarbon that comprises the majority of the chemical profile of queens and their eggs, and also affects worker behaviour, by reducing aggression towards objects bearing the pheromone. We further show that the pheromone elicits a strong response in worker antennae and that its production by queens is selectively reduced following an immune challenge. These results suggest that the pheromone has a central role in colony organization and support the hypothesis that worker sterility represents altruistic self-restraint in response to an honest quality signal.
Journal of Evolutionary Biology | 2006
B. Sadd; Luke Holman; H. Armitage; F. Lock; R. Marland; Michael T. Siva-Jothy
Organisms partition resources into life‐history traits in order to maximise fitness over their expected lifespan. For the males of many species fitness is determined by qualitative and quantitative aspects of costly sexual signals: The notion that epigamic traits are costly forms the cornerstone of those theories that propose parasites drive sexual selection. Consequently studies examining this notion assume sexual signalling is honest (i.e. driven by cost) when they seek to identify correlations or causal links between male immune function and attractiveness. We demonstrate that immune challenged males of the mealworm beetle, Tenebrio molitor, increased their investment in epigamic pheromone signals: these males became significantly more attractive to females whilst increasing the activity of a key immune effector system. In other words males increase terminal reproductive effort (invest in attractiveness) in response to a survival threat (immune insult). Consequently the signal preferred by the female is dishonest when considering the males condition.
Nature | 2011
Jacobus J. Boomsma; Madeleine Beekman; Charlie K. Cornwallis; Ashleigh S. Griffin; Luke Holman; William O. H. Hughes; Laurent Keller; Benjamin P. Oldroyd; Francis L. W. Ratnieks
Arising from M. A. Nowak, C. E. Tarnita & E. O. Wilson 466, 1057–1062 (2010)10.1038/nature09205; Nowak et al. replyThe paper by Nowak et al. has the evolution of eusociality as its title, but it is mostly about something else. It argues against inclusive fitness theory and offers an alternative modelling approach that is claimed to be more fundamental and general, but which, we believe, has no practical biological meaning for the evolution of eusociality. Nowak et al. overlook the robust empirical observation that eusociality has only arisen in clades where mothers are associated with their full-sibling offspring; that is, in families where the average relatedness of offspring to siblings is as high as to their own offspring, independent of population structure or ploidy. We believe that this omission makes the paper largely irrelevant for understanding the evolution of eusociality.
Philosophical Transactions of the Royal Society B | 2013
Luke Holman; Hanna Kokko
Polyandry, by elevating sexual conflict and selecting for reduced male care relative to monandry, may exacerbate the cost of sex and thereby seriously impact population fitness. On the other hand, polyandry has a number of possible population-level benefits over monandry, such as increased sexual selection leading to faster adaptation and a reduced mutation load. Here, we review existing information on how female fitness evolves under polyandry and how this influences population dynamics. In balance, it is far from clear whether polyandry has a net positive or negative effect on female fitness, but we also stress that its effects on individuals may not have visible demographic consequences. In populations that produce many more offspring than can possibly survive and breed, offspring gained or lost as a result of polyandry may not affect population size. Such ecological ‘masking’ of changes in population fitness could hide a response that only manifests under adverse environmental conditions (e.g. anthropogenic change). Surprisingly few studies have attempted to link mating system variation to population dynamics, and in general we urge researchers to consider the ecological consequences of evolutionary processes.
Trends in Ecology and Evolution | 2016
Anna K. Lindholm; Kelly A. Dyer; Renée C. Firman; Lila Fishman; Wolfgang Forstmeier; Luke Holman; Hanna Johannesson; Ulrich Knief; Hanna Kokko; Amanda M. Larracuente; Andri Manser; Catherine Montchamp-Moreau; V. G. Petrosyan; Andrew Pomiankowski; Daven C. Presgraves; L. D. Safronova; Andreas Sutter; Robert L. Unckless; Rudi L. Verspoor; Nina Wedell; Gerald S. Wilkinson; Tom A. R. Price
Meiotic drivers are genetic variants that selfishly manipulate the production of gametes to increase their own rate of transmission, often to the detriment of the rest of the genome and the individual that carries them. This genomic conflict potentially occurs whenever a diploid organism produces a haploid stage, and can have profound evolutionary impacts on gametogenesis, fertility, individual behaviour, mating system, population survival, and reproductive isolation. Multiple research teams are developing artificial drive systems for pest control, utilising the transmission advantage of drive to alter or exterminate target species. Here, we review current knowledge of how natural drive systems function, how drivers spread through natural populations, and the factors that limit their invasion.
Proceedings of the Royal Society of London Series B: Biological Sciences | 2010
Luke Holman; Stephanie Dreier; Patrizia d'Ettorre
Social insects offer unique opportunities to test predictions regarding the evolution of cooperation, life histories and communication. Colony founding by groups of unrelated queens, some of which are later killed, may select for selfish reproductive strategies, honest signalling and punishment. Here, we use a brood transfer experiment to test whether cofounding queens of the ant Lasius niger ‘selfishly’ adjust their productivity when sharing the nest with future competitors. We simultaneously analysed queen cuticular hydrocarbon (CHC) profiles to investigate whether queens honestly signal their reproductive output or produce dishonest, manipulative signals, providing a novel test of the evolutionary significance of queen pheromones. Queens produced fewer workers when their colony contained ample brood, but only in the presence of competitors, suggesting selfish conservation of resources. Several CHCs correlated with reproductive maturation, and to a lesser extent with productivity; the same hydrocarbons were more abundant on queens that were not killed, suggesting that workers select productive queens using these chemical cues. Our results highlight the role of honest signalling in the evolution of cooperation: whenever cheaters can be reliably identified, they may incur sanctions that reduce the incentive to be selfish.
Evolution | 2012
Luke Holman
Signal costs and evolutionary constraints have both been proposed as ultimate explanations for the ubiquity of honest signaling, but the interface between these two factors is unclear. Here, I propose a pluralistic interpretation, and use game theory to demonstrate that evolutionary constraints determine whether signals evolve to be costly or cheap. Specifically, when the costs or benefits of signaling are strongly influenced by the senders quality, low‐cost signals evolve. The model reaffirms that cheap and costly signals can both be honest, and predicts that expensive signals should have more positive allometric slopes than cheap ones. The new framework is applied to an experimental study of an ant queen pheromone that honestly signals fecundity. Juvenile hormone was found to have opposing, dose‐dependent effects on pheromone production and fecundity and was fatal at high doses, indicating that endocrine‐mediated trade‐offs preclude dishonesty. Several lines of evidence suggest that the realized cost of pheromone production may be nontrivial, and the antagonistic effects of juvenile hormone indicate the presence of significant evolutionary constraints. I conclude that the honesty of queen pheromones and other signals is likely enforced by both the cost of dishonesty and a suite of evolutionary constraints.
PLOS Biology | 2015
Luke Holman; Megan L. Head; Robert Lanfear; Michael D. Jennions
Observer bias and other “experimenter effects” occur when researchers’ expectations influence study outcome. These biases are strongest when researchers expect a particular result, are measuring subjective variables, and have an incentive to produce data that confirm predictions. To minimize bias, it is good practice to work “blind,” meaning that experimenters are unaware of the identity or treatment group of their subjects while conducting research. Here, using text mining and a literature review, we find evidence that blind protocols are uncommon in the life sciences and that nonblind studies tend to report higher effect sizes and more significant p-values. We discuss methods to minimize bias and urge researchers, editors, and peer reviewers to keep blind protocols in mind.