Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luke M. Judge is active.

Publication


Featured researches published by Luke M. Judge.


Journal of Clinical Investigation | 2009

Dystrophins carrying spectrin-like repeats 16 and 17 anchor nNOS to the sarcolemma and enhance exercise performance in a mouse model of muscular dystrophy

Yi Lai; Gail D. Thomas; Yongping Yue; Hsiao T. Yang; Dejia Li; Chun Long; Luke M. Judge; Brian Bostick; Jeffrey S. Chamberlain; Ronald L. Terjung; Dongsheng Duan

Sarcolemma-associated neuronal NOS (nNOS) plays a critical role in normal muscle physiology. In Duchenne muscular dystrophy (DMD), the loss of sarcolemmal nNOS leads to functional ischemia and muscle damage; however, the mechanism of nNOS subcellular localization remains incompletely understood. According to the prevailing model, nNOS is recruited to the sarcolemma by syntrophin, and in DMD this localization is altered. Intriguingly, the presence of syntrophin on the membrane does not always restore sarcolemmal nNOS. Thus, we wished to determine whether dystrophin functions in subcellular localization of nNOS and which regions may be necessary. Using in vivo transfection of dystrophin deletion constructs, we show that sarcolemmal targeting of nNOS was dependent on the spectrin-like repeats 16 and 17 (R16/17) within the rod domain. Treatment of mdx mice (a DMD model) with R16/17-containing synthetic dystrophin genes effectively ameliorated histological muscle pathology and improved muscle strength as well as exercise performance. Furthermore, sarcolemma-targeted nNOS attenuated alpha-adrenergic vasoconstriction in contracting muscle and improved muscle perfusion during exercise as measured by Doppler and microsphere circulation. In summary, we have identified the dystrophin spectrin-like repeats 16 and 17 as a novel scaffold for nNOS sarcolemmal targeting. These data suggest that muscular dystrophy gene therapies based on R16/17-containing dystrophins may yield better clinical outcomes than the current therapies.


Nature Methods | 2014

Isolation of single-base genome-edited human iPS cells without antibiotic selection.

Yuichiro Miyaoka; Amanda H. Chan; Luke M. Judge; Jennie C. Yoo; Miller Huang; Trieu Nguyen; Paweena Lizarraga; Po-Lin So; Bruce R. Conklin

Precise editing of human genomes in pluripotent stem cells by homology-driven repair of targeted nuclease–induced cleavage has been hindered by the difficulty of isolating rare clones. We developed an efficient method to capture rare mutational events, enabling isolation of mutant lines with single-base substitutions without antibiotic selection. This method facilitates efficient induction or reversion of mutations associated with human disease in isogenic human induced pluripotent stem cells.


Cell Stem Cell | 2016

CRISPR Interference Efficiently Induces Specific and Reversible Gene Silencing in Human iPSCs

Mohammad A. Mandegar; Nathaniel Huebsch; Frolov Eb; Shin E; Annie Truong; Michael P. Olvera; Amanda H. Chan; Yuichiro Miyaoka; Holmes K; Spencer Ci; Luke M. Judge; David E. Gordon; Tilde Eskildsen; Jacqueline E. Villalta; Max A. Horlbeck; Luke A. Gilbert; Nevan J. Krogan; Søren Paludan Sheikh; Jonathan S. Weissman; Lei S. Qi; Po-Lin So; Bruce R. Conklin

Developing technologies for efficient and scalable disruption of gene expression will provide powerful tools for studying gene function, developmental pathways, and disease mechanisms. Here, we develop clustered regularly interspaced short palindromic repeat interference (CRISPRi) to repress gene expression in human induced pluripotent stem cells (iPSCs). CRISPRi, in which a doxycycline-inducible deactivated Cas9 is fused to a KRAB repression domain, can specifically and reversibly inhibit gene expression in iPSCs and iPSC-derived cardiac progenitors, cardiomyocytes, and T lymphocytes. This gene repression system is tunable and has the potential to silence single alleles. Compared with CRISPR nuclease (CRISPRn), CRISPRi gene repression is more efficient and homogenous across cell populations. The CRISPRi system in iPSCs provides a powerful platform to perform genome-scale screens in a wide range of iPSC-derived cell types, dissect developmental pathways, and model disease.


Journal of Cell Science | 2006

Dissecting the signaling and mechanical functions of the dystrophin-glycoprotein complex

Luke M. Judge; Miki Haraguchiln; Jeffrey S. Chamberlain

Duchenne muscular dystrophy is a severe disorder caused by mutations in the dystrophin gene. Dystrophin is required for assembly of the dystrophin-glycoprotein complex and provides a mechanically strong link between the cytoskeleton and the extracellular matrix. Several proteins in the complex also participate in signaling cascades, but the relationship between these signaling and mechanical functions in the development of muscular dystrophy is unclear. To explore the mechanisms of myofiber necrosis in dystrophin-deficient muscle, we tested the hypothesis that restoration of this complex without a link to the cytoskeleton ameliorates dystrophic pathology. Transgenic mice were generated that express Dp116, a non-muscle isoform of dystrophin that assembles the dystrophin-glycoprotein complex, in muscles of dystrophin-deficient mdx4cv mice. However, the phenotype of these mice was more severe than in controls. Displacement of utrophin by Dp116 correlated with the severity of dystrophy in different muscle groups. Comparison with other transgenic lines demonstrated that parts of the dystrophin central rod domain were required to localize neuronal nitric oxide synthase to the sarcolemma, but this was not correlated with presence or extent of dystrophy. Our results suggest that mechanical destabilization, rather than signaling dysfunction, is the primary cause of myofiber necrosis in dystrophin-deficient muscle.


Journal of Cell Science | 2010

Sarcolemmal nNOS anchoring reveals a qualitative difference between dystrophin and utrophin.

Dejia Li; Akshay Bareja; Luke M. Judge; Yongping Yue; Yi Lai; Rebecca J. Fairclough; Kay E. Davies; Jeffrey S. Chamberlain; Dongsheng Duan

Duchenne muscular dystrophy (DMD) is a lethal muscle disease caused by dystrophin deficiency. In normal muscle, dystrophin helps maintain sarcolemmal stability. Dystrophin also recruits neuronal nitric oxide synthase (nNOS) to the sarcolemma. Failure to anchor nNOS to the membrane leads to functional ischemia and aggravates muscle disease in DMD. Over the past two decades, a great variety of therapeutic modalities have been explored to treat DMD. A particularly attractive approach is to increase utrophin expression. Utrophin shares considerable sequence, structural and functional similarity with dystrophin. Here, we test the hypothesis that utrophin also brings nNOS to the sarcolemma. Full-length utrophin cDNA was expressed in dystrophin-deficient mdx mice by gutted adenovirus or via transgenic overexpression. Subcellular nNOS localization was determined by immunofluorescence staining, in situ nNOS activity staining and microsomal preparation western blot. Despite supra-physiological utrophin expression, we did not detect nNOS at the sarcolemma. Furthermore, transgenic utrophin overexpression failed to protect mdx muscle from exercise-associated injury. Our results suggest that full-length utrophin cannot anchor nNOS to the sarcolemma. This finding might have important implications for the development of utrophin-based DMD therapies.


Journal of Biological Chemistry | 2002

Protein Engineering of Protein Kinase A Catalytic Subunits Results in the Acquisition of Novel Inhibitor Sensitivity

Colleen M. Niswender; R. Wesley Ishihara; Luke M. Judge; Chao Zhang; Kevan M. Shokat; G. Stanley McKnight

Analysis of the role of specific protein kinases in signal transduction networks has relied heavily on ATP analog inhibitors. Currently used agents, however, often do not distinguish between kinase family members. Genetic approaches can also be used to inactivate a specific kinase, but these techniques do not afford the rapid kinetics possible with pharmacological inhibitors. To circumvent this problem, modification of the structure of a particular protein kinase can be performed to engineer a drug-target interaction of choice. We have used this method to create protein kinase A (PKA) catalytic subunits with modifications that confer sensitivity to novel ATP analog inhibitors. Mutation of methionine 120 to alanine or glycine in either the Cα or Cβ subunits of PKA induces sensitivity to a series of C-3 derivatized pyrazolo[3,4-d]pyrimidine-based inhibitors. Modification of threonine 183 enhances this inhibitor sensitivity. The IC50 values in cell culture of the most broadly effective agent, 1-NM, ranged from 25 to 200 nm depending upon the combination of modified amino acids and were significantly higher than the potencies observed with H-89. Despite their high sequence conservation, Cβ enzymes with inhibitor-sensitive amino acids at position 120 showed a substantial loss of overall catalytic activity when used to induce reporter gene transcription in transfected cells. Conversion of position 46 (lysine to isoleucine) rescued the ability of position 120 mutated Cβ enzymes to induce gene transcription. Application of this combined genetic and pharmacological approach should allow analysis of the specific roles of PKA isoforms in cell culture and in vivo.


Scientific Reports | 2016

Miniaturized iPS-Cell-Derived Cardiac Muscles for Physiologically Relevant Drug Response Analyses

Nathaniel Huebsch; Peter Loskill; Nikhil Deveshwar; C. Ian Spencer; Luke M. Judge; Mohammad A. Mandegar; Cade B. Fox; Tamer M.A. Mohamed; Zhen Ma; Anurag Mathur; Alice M. Sheehan; Annie Truong; Mike Saxton; Jennie Yoo; Deepak Srivastava; Tejal A. Desai; Po Lin So; Kevin E. Healy; Bruce R. Conklin

Tissue engineering approaches have the potential to increase the physiologic relevance of human iPS-derived cells, such as cardiomyocytes (iPS-CM). However, forming Engineered Heart Muscle (EHM) typically requires >1 million cells per tissue. Existing miniaturization strategies involve complex approaches not amenable to mass production, limiting the ability to use EHM for iPS-based disease modeling and drug screening. Micro-scale cardiospheres are easily produced, but do not facilitate assembly of elongated muscle or direct force measurements. Here we describe an approach that combines features of EHM and cardiospheres: Micro-Heart Muscle (μHM) arrays, in which elongated muscle fibers are formed in an easily fabricated template, with as few as 2,000 iPS-CM per individual tissue. Within μHM, iPS-CM exhibit uniaxial contractility and alignment, robust sarcomere assembly, and reduced variability and hypersensitivity in drug responsiveness, compared to monolayers with the same cellular composition. μHM mounted onto standard force measurement apparatus exhibited a robust Frank-Starling response to external stretch, and a dose-dependent inotropic response to the β-adrenergic agonist isoproterenol. Based on the ease of fabrication, the potential for mass production and the small number of cells required to form μHM, this system provides a potentially powerful tool to study cardiomyocyte maturation, disease and cardiotoxicology in vitro.


PLOS Genetics | 2010

The polyproline site in hinge 2 influences the functional capacity of truncated dystrophins.

Glen B. Banks; Luke M. Judge; James M. Allen; Jeffrey S. Chamberlain

Mutations in dystrophin can lead to Duchenne muscular dystrophy or the more mild form of the disease, Becker muscular dystrophy. The hinge 3 region in the rod domain of dystrophin is particularly prone to deletion mutations. In-frame deletions of hinge 3 are predicted to lead to BMD, however the severity of disease can vary considerably. Here we performed extensive structure-function analyses of truncated dystrophins with modified hinges and spectrin-like repeats in mdx mice. We found that the polyproline site in hinge 2 profoundly influences the functional capacity of a microdystrophinΔR4-R23/ΔCT with a large deletion in the hinge 3 region. Inclusion of polyproline in microdystrophinΔR4-R23/ΔCT led to small myofibers (12% smaller than wild-type), Achilles myotendinous disruption, ringed fibers, and aberrant neuromuscular junctions in the mdx gastrocnemius muscles. Replacing hinge 2 of microdystrophinΔR4-R23/ΔCT with hinge 3 significantly improved the functional capacity to prevent muscle degeneration, increase muscle fiber area, and maintain the junctions. We conclude that the rigid α-helical structure of the polyproline site significantly impairs the functional capacity of truncated dystrophins to maintain appropriate connections between the cytoskeleton and extracellular matrix.


Human Molecular Genetics | 2011

Expression of the dystrophin isoform Dp116 preserves functional muscle mass and extends lifespan without preventing dystrophy in severely dystrophic mice.

Luke M. Judge; Andrea L.H. Arnett; Glen B. Banks; Jeffrey S. Chamberlain

Dp116 is a non-muscle isoform of dystrophin that assembles the dystrophin-glycoprotein complex (DGC), but lacks actin-binding domains. To examine the functional role of the DGC, we expressed the Dp116 transgene in mice lacking both dystrophin and utrophin (mdx:utrn(-/-)). Unexpectedly, expression of Dp116 prevented the most severe aspects of the mdx:utrn(-/-) phenotype. Dp116:mdx:utrn(-/-) transgenic mice had dramatic improvements in growth, mobility and lifespan compared with controls. This was associated with increased muscle mass and force generating capacity of limb muscles, although myofiber size and specific force were unchanged. Conversely, Dp116 had no effect on dystrophic injury as determined by muscle histopathology and serum creatine kinase levels. Dp116 also failed to restore normal fiber-type distribution or the post-synaptic architecture of the neuromuscular junction. These data demonstrate that the DGC is critical for growth and maintenance of muscle mass, a function that is independent of the ability to prevent dystrophic pathophysiology. Likewise, this is the first demonstration in skeletal muscle of a positive functional role for a dystrophin protein that lacks actin-binding domains. We conclude that both mechanical and non-mechanical functions of dystrophin are important for its role in skeletal muscle.


Tetrahedron | 2002

A convenient large-scale chiral synthesis of protected 2-substituted 4-oxo-piperidine derivatives

Jesper Lau; Thomas Kruse Hansen; John Paul Kilburn; Karla Frydenvang; Daniel D. Holsworth; Yu Ge; Roy Teruyuki Uyeda; Luke M. Judge; Henrik Sune Andersen

Abstract A convenient large-scale chiral synthesis of protected 2-substituted-4-oxo-piperidine derivatives is described. Hetero Diels–Alder reaction between trifluoroacetic acid–boron trifluoride activated (1-phenyl-ethylimino)acetic acid ethyl ester and 2-trimethylsilyloxy-1,3-butadiene gave rise to a mixture of two diastereomers of 4-oxo-1-(1-phenyl-ethyl)-piperidine-2-carboxylic acid ethyl ester. Starting from (S)-1-phenyl-ethylamine pure adduct can be obtained by crystallization of the diastereomeric mixture. Reduction of the ester group gave rise to the corresponding hydroxymethyl analogue, which was subjected to further functional group transformations to yield the desired protected 2-aminomethyl-4-oxo-piperidine derivative without any racemization being observed.

Collaboration


Dive into the Luke M. Judge's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Ian Spencer

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge