Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luke Masterson is active.

Publication


Featured researches published by Luke Masterson.


Bioconjugate Chemistry | 2013

A Potent Anti-CD70 Antibody-Drug Conjugate Combining a Dimeric Pyrrolobenzodiazepine Drug with Site-Specific Conjugation Technology

Scott C. Jeffrey; Patrick J. Burke; Robert P. Lyon; David W. Meyer; Django Sussman; Martha Anderson; Joshua H. Hunter; Chris I. Leiske; Jamie B. Miyamoto; Nicole Nicholas; Nicole M. Okeley; Russell J. Sanderson; Ivan Stone; Weiping Zeng; Stephen J. Gregson; Luke Masterson; Arnaud Tiberghien; Philip W. Howard; David E. Thurston; Che-Leung Law; Peter D. Senter

A highly cytotoxic DNA cross-linking pyrrolobenzodiazepine (PBD) dimer with a valine-alanine dipeptide linker was conjugated to the anti-CD70 h1F6 mAb either through endogenous interchain cysteines or, site-specifically, through engineered cysteines at position 239 of the heavy chains. The h1F6239C-PBD conjugation strategy proved to be superior to interchain cysteine conjugation, affording an antibody-drug conjugate (ADC) with high uniformity in drug-loading and low levels of aggregation. In vitro cytotoxicity experiments demonstrated that the h1F6239C-PBD was potent and immunologically specific on CD70-positive renal cell carcinoma (RCC) and non-Hodgkin lymphoma (NHL) cell lines. The conjugate was resistant to drug loss in plasma and in circulation, and had a pharmacokinetic profile closely matching that of the parental h1F6239C antibody capped with N-ethylmaleimide (NEM). Evaluation in CD70-positive RCC and NHL mouse xenograft models showed pronounced antitumor activities at single or weekly doses as low as 0.1 mg/kg of ADC. The ADC was tolerated at 2.5 mg/kg. These results demonstrate that PBDs can be effectively used for antibody-targeted therapy.


Cancer Research | 2010

SG2285, a Novel C2-Aryl-Substituted Pyrrolobenzodiazepine Dimer Prodrug That Cross-links DNA and Exerts Highly Potent Antitumor Activity

John A. Hartley; Anzu Hamaguchi; Marissa Coffils; Christopher Martin; Marie Suggitt; Zhizhi Chen; Stephen J. Gregson; Luke Masterson; Arnaud Tiberghien; Janet M. Hartley; Chris Pepper; Thet Thet Lin; Chris Fegan; David E. Thurston; Philip W. Howard

The pyrrolobenzodiazepines (PBD) are naturally occurring antitumor antibiotics, and a PBD dimer (SJG-136, SG2000) is in phase II trials. Many potent PBDs contain a C2-endo-exo unsaturated motif associated with the pyrrolo C-ring. The novel compound SG2202 is a PBD dimer containing this motif. SG2285 is a water-soluble prodrug of SG2202 in which two bisulfite groups inactivate the PBD N10-C11 imines. Once the bisulfites are eliminated, the imine moieties can bind covalently in the DNA minor groove, forming an interstrand cross-link. The mean in vitro cytotoxic potency of SG2285 against human tumor cell lines is GI(50) 20 pmol/L. SG2285 is highly efficient at producing DNA interstrand cross-links in cells, but they form more slowly than those produced by SG2202. Cellular sensitivity to SG2285 was primarily dependent on ERCC1 and homologous recombination repair. In primary B-cell chronic lymphocytic leukemia samples, the mean LD(50) was significantly lower than in normal age-matched B and T lymphocytes. Antitumor activity was shown in several human tumor xenograft models, including ovarian, non-small cell lung, prostate, pancreatic, and melanoma, with cures obtained in the latter model with a single dose. Further, in an advanced-stage colon model, SG2285 administered either as a single dose, or in two repeat dose schedules, was superior to irinotecan. Our findings define SG2285 as a highly active cytotoxic compound with antitumor properties desirable for further development.


Molecular Cancer Therapeutics | 2017

Modulating Therapeutic Activity and Toxicity of Pyrrolobenzodiazepine Antibody-Drug Conjugates with Self-Immolative Disulfide Linkers

Thomas H. Pillow; Melissa Schutten; Shang-Fan Yu; Rachana Ohri; Jack Sadowsky; Kirsten Achilles Poon; Willy Solis; Fiona Zhong; Geoffrey Del Rosario; Mary Ann T. Go; Jeffrey Lau; Sharon Yee; Jintang He; Luna Liu; Carl Ng; Keyang Xu; Douglas D. Leipold; Amrita V. Kamath; Donglu Zhang; Luke Masterson; Stephen J. Gregson; Philip W. Howard; Fan Fang; Jinhua Chen; Janet Gunzner-Toste; Katherine K. Kozak; Susan D. Spencer; Paul Polakis; Andrew G. Polson; John A. Flygare

A novel disulfide linker was designed to enable a direct connection between cytotoxic pyrrolobenzodiazepine (PBD) drugs and the cysteine on a targeting antibody for use in antibody–drug conjugates (ADCs). ADCs composed of a cysteine-engineered antibody were armed with a PBD using a self-immolative disulfide linker. Both the chemical linker and the antibody site were optimized for this new bioconjugation strategy to provide a highly stable and efficacious ADC. This novel disulfide ADC was compared with a conjugate containing the same PBD drug, but attached to the antibody via a peptide linker. Both ADCs had similar efficacy in mice bearing human tumor xenografts. Safety studies in rats revealed that the disulfide-linked ADC had a higher MTD than the peptide-linked ADC. Overall, these data suggest that the novel self-immolative disulfide linker represents a valuable way to construct ADCs with equivalent efficacy and improved safety. Mol Cancer Ther; 16(5); 871–8. ©2017 AACR.


Journal of Medicinal Chemistry | 2017

Pyrrolobenzodiazepine Dimer Antibody-Drug Conjugates: Synthesis and Evaluation of Non-Cleavable Drug-Linkers.

Stephen J. Gregson; Luke Masterson; Binqing Wei; Thomas H. Pillow; Susan D. Spencer; Gyoung-Dong Kang; Shang-Fan Yu; Helga Raab; Jeffrey Lau; Guangmin Li; Gail Lewis Phillips; Janet Gunzner-Toste; Brian Safina; Rachana Ohri; Martine Darwish; Katherine R. Kozak; Josefa dela Cruz-Chuh; Andrew Polson; John A. Flygare; Philip W. Howard

Three rationally designed pyrrolobenzodiazepine (PBD) drug-linkers have been synthesized via intermediate 19 for use in antibody-drug conjugates (ADCs). They lack a cleavable trigger in the linker and consist of a maleimide for cysteine antibody conjugation, a hydrophilic spacer, and either an alkyne (6), triazole (7), or piperazine (8) link to the PBD. In vitro IC50 values were 11-48 ng/mL in HER2 3+ SK-BR-3 and KPL-4 (7 inactive) for the anti-HER2 ADCs (HER2 0 MCF7, all inactive) and 0.10-1.73 μg/mL (7 inactive) in CD22 3+ BJAB and WSU-DLCL2 for anti-CD22 ADCs (CD22 0 Jurkat, all inactive at low doses). In vivo antitumor efficacy for the anti-HER2 ADCs in Founder 5 was observed with tumor stasis at 0.5-1 mg/kg, 1 mg/kg, and 3-6 mg/kg for 6, 8, and 7, respectively. Tumor stasis at 2 mg/kg was observed for anti-CD22 6 in WSU-DLCL2. In summary, noncleavable PBD-ADCs exhibit potent activity, particularly in HER2 models.


Clinical Cancer Research | 2017

Fractionated Dosing Improves Preclinical Therapeutic Index of Pyrrolobenzodiazepine-Containing Antibody Drug Conjugates

Mary Jane Hinrichs; Pauline M. Ryan; Bo Zheng; Shameen Afif-Rider; Xiang Qing Yu; Michele Gunsior; Haihong Zhong; Jay Harper; Binyam Bezabeh; Kapil Vashisht; Marlon Rebelatto; Molly Reed; Patricia C. Ryan; Shannon Breen; Neki V. Patel; Cui Chen; Luke Masterson; Arnaud Tiberghien; Phillip W. Howard; Nazzareno Dimasi; Rakesh Dixit

Purpose: To use preclinical models to identify a dosing schedule that improves tolerability of highly potent pyrrolobenzodiazepine dimers (PBDs) antibody drug conjugates (ADCs) without compromising antitumor activity. Experimental Design: A series of dose-fractionation studies were conducted to investigate the pharmacokinetic drivers of safety and efficacy of PBD ADCs in animal models. The exposure–activity relationship was investigated in mouse xenograft models of human prostate cancer, breast cancer, and gastric cancer by comparing antitumor activity after single and fractionated dosing with tumor-targeting ADCs conjugated to SG3249, a potent PBD dimer. The exposure–tolerability relationship was similarly investigated in rat and monkey toxicology studies by comparing tolerability, as assessed by survival, body weight, and organ-specific toxicities, after single and fractionated dosing with ADCs conjugated to SG3249 (rats) or SG3400, a structurally related PBD (monkeys). Results: Observations of similar antitumor activity in mice treated with single or fractionated dosing suggests that antitumor activity of PBD ADCs is more closely related to total exposure (AUC) than peak drug concentrations (Cmax). In contrast, improved survival and reduced toxicity in rats and monkeys treated with a fractionated dosing schedule suggests that tolerability of PBD ADCs is more closely associated with Cmax than AUC. Conclusions: We provide the first evidence that fractionated dosing can improve preclinical tolerability of at least some PBD ADCs without compromising efficacy. These findings suggest that preclinical exploration of dosing schedule could be an important clinical strategy to improve the therapeutic window of highly potent ADCs and should be investigated further. Clin Cancer Res; 23(19); 5858–68. ©2017 AACR.


Journal of Medicinal Chemistry | 2017

Discovery of Peptidomimetic Antibody–Drug Conjugate Linkers with Enhanced Protease Specificity

Binqing Wei; Janet Gunzner-Toste; Hui Yao; Tao Wang; Jing Wang; Zijin Xu; Jinhua Chen; John S. Wai; Jim Nonomiya; Siao Ping Tsai; Josefa Chuh; Katherine R. Kozak; Yichin Liu; Shang-Fan Yu; Jeff Lau; Guangmin Li; Gail D. Phillips; Doug Leipold; Amrita Kamath; Dian Su; Keyang Xu; Charles Eigenbrot; Stefan Steinbacher; Rachana Ohri; Helga Raab; Leanna Staben; Guiling Zhao; John A. Flygare; Thomas H. Pillow; Vishal A. Verma

Antibody-drug conjugates (ADCs) have become an important therapeutic modality for oncology, with three approved by the FDA and over 60 others in clinical trials. Despite the progress, improvements in ADC therapeutic index are desired. Peptide-based ADC linkers that are cleaved by lysosomal proteases have shown sufficient stability in serum and effective payload-release in targeted cells. If the linker can be preferentially hydrolyzed by tumor-specific proteases, safety margin may improve. However, the use of peptide-based linkers limits our ability to modulate protease specificity. Here we report the structure-guided discovery of novel, nonpeptidic ADC linkers. We show that a cyclobutane-1,1-dicarboxamide-containing linker is hydrolyzed predominantly by cathepsin B while the valine-citrulline dipeptide linker is not. ADCs bearing the nonpeptidic linker are as efficacious and stable in vivo as those with the dipeptide linker. Our results strongly support the application of the peptidomimetic linker and present new opportunities for improving the selectivity of ADCs.


Scientific Reports | 2018

Pre-clinical pharmacology and mechanism of action of SG3199, the pyrrolobenzodiazepine (PBD) dimer warhead component of antibody-drug conjugate (ADC) payload tesirine

John A. Hartley; M. Flynn; John P. Bingham; Simon Corbett; Halla W. Reinert; Arnaud Tiberghien; Luke Masterson; Dyeison Antonow; Lauren Adams; Sajidah Chowdhury; David G. Williams; Shenlan Mao; Jay Harper; Carin E.G. Havenith; Francesca Zammarchi; Simon Chivers; Patrick H. van Berkel; Philip W. Howard

Synthetic pyrrolobenzodiazepine (PBD) dimers, where two PBD monomers are linked through their aromatic A-ring phenolic C8-positions via a flexible propyldioxy tether, are highly efficient DNA minor groove cross-linking agents with potent cytotoxicity. PBD dimer SG3199 is the released warhead component of the antibody-drug conjugate (ADC) payload tesirine (SG3249), currently being evaluated in several ADC clinical trials. SG3199 was potently cytotoxic against a panel of human solid tumour and haematological cancer cell lines with a mean GI50 of 151.5 pM. Cells defective in DNA repair protein ERCC1 or homologous recombination repair showed increased sensitivity to SG3199 and the drug was only moderately susceptible to multidrug resistance mechanisms. SG3199 was highly efficient at producing DNA interstrand cross-links in naked linear plasmid DNA and dose-dependent cross-linking was observed in cells. Cross-links formed rapidly in cells and persisted over 36 hours. Following intravenous (iv) administration to rats SG3199 showed a very rapid clearance with a half life as short as 8 minutes. These combined properties of cytotoxic potency, rapid formation and persistence of DNA interstrand cross-links and very short half-life contribute to the emerging success of SG3199 as a warhead in clinical stage ADCs.


Bioorganic & Medicinal Chemistry Letters | 2018

Synthesis of a heterotrifunctional linker for the site-specific preparation of antibody-drug conjugates with two distinct warheads

Amit Kumar; Krista Kinneer; Luke Masterson; Ebele Ezeadi; Philip W. Howard; Herren Wu; Changshou Gao; Nazzareno Dimasi

Codelivery of multiple therapeutic agents with different anticancer mechanisms can overcome drug resistance as well as generate additive or synergistic anticancer effects that may enhance the antitumor efficacy. Antibody-drug conjugates (ADCs) can be used for highly specific delivery of multiple therapeutic agents with different anticancer mechanisms, though more research is required towards designing flexible platforms on which dual drug ADCs could be prepared. Herein, we describe the synthesis of a heterotrifunctional linker that could be used to construct flexible platforms for preparing dual-cytotoxic drug conjugates in a site-specific manner. As a proof of concept, we synthesized dual drug ADCs carrying monomethyl auristain E (MMAE, tubulin polymerization inhibitor) and pyrrolobenzodiazepine dimer (PBD, DNA minor groove alkylator). We then evaluated the dual drug ADCs for in vitro efficacy and confirmed the dual mechanism of action.


Journal of Medicinal Chemistry | 2006

Design, synthesis, and biophysical and biological evaluation of a series of Pyrrolobenzodiazepine - Poly(N-methylpyrrole) conjugates

Geoff Wells; Christopher Martin; Philip W. Howard; Zara A. Sands; Charles A. Laughton; Arnaud Tiberghien; Chi Kit Woo; Luke Masterson; Marissa J. Stephenson; John A. Hartley; Terence C. Jenkins; Steven D. Shnyder; Paul M. Loadman; Michael J. Waring; David E. Thurston


Archive | 2004

SYNTHESIS OF PROTECTED PYRROLOBENZODIAZEPINES

Philip W. Howard; Luke Masterson

Collaboration


Dive into the Luke Masterson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John A. Hartley

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge