Luke Norman
King's College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Luke Norman.
JAMA Psychiatry | 2016
Luke Norman; Christina O. Carlisi; Steve Lukito; Heledd Hart; David Mataix-Cols; Joaquim Radua; Katya Rubia
IMPORTANCE Patients with attention-deficit/hyperactivity disorder (ADHD) and obsessive-compulsive disorder (OCD) share impaired inhibitory control. However, it is unknown whether impairments are mediated by shared or disorder-specific neurostructural and neurofunctional abnormalities. OBJECTIVE To establish shared and disorder-specific structural, functional, and overlapping multimodal abnormalities in these 2 disorders through a voxel-based meta-analytic comparison of whole-brain gray matter volume (GMV) and functional magnetic resonance imaging (fMRI) studies of inhibition in patients with ADHD and OCD. DATA SOURCES Literature search using PubMed, ScienceDirect, Web of Knowledge, and Scopus up to September 30, 2015. STUDY SELECTION Whole-brain voxel-based morphometry (VBM) or fMRI studies during inhibitory control comparing children and adults with ADHD or OCD with controls. DATA EXTRACTION AND SYNTHESIS Voxel-wise meta-analyses of GMV or fMRI differences were performed using Seed-based d-Mapping. Regional structure and function abnormalities were assessed within each patient group and then a quantitative comparison was performed of abnormalities (relative to controls) between ADHD and OCD. MAIN OUTCOMES AND MEASURES Meta-analytic disorder-specific and shared abnormalities in GMV, in inhibitory fMRI, and in multimodal functional and structural measures. RESULTS The search revealed 27 ADHD VBM data sets (including 931 patients with ADHD and 822 controls), 30 OCD VBM data sets (928 patients with OCD and 942 controls), 33 ADHD fMRI data sets (489 patients with ADHD and 591 controls), and 18 OCD fMRI data sets (287 patients with OCD and 284 controls). Patients with ADHD showed disorder-contrasting multimodal structural (left z = 1.904, P < .001; right z = 1.738, P < .001) and functional (left z = 1.447, P < .001; right z = 1.229, P < .001) abnormalities in bilateral basal ganglia/insula, which were decreased in GMV and function in patients with ADHD relative to those with OCD (and controls). In OCD patients, they were enhanced relative to controls. Patients with OCD showed disorder-specific reduced function and structure in rostral and dorsal anterior cingulate/medial prefrontal cortex (fMRI z = 2.113, P < .001; VBM z = 1.622, P < .001), whereas patients with ADHD showed disorder-specific underactivation predominantly in the right ventrolateral prefrontal cortex (z = 1.229, P < .001). Ventromedial prefrontal GMV reduction was shared in both disorders relative to controls. CONCLUSIONS AND RELEVANCE Shared impairments in inhibitory control, rather than representing a transdiagnostic endophenotype in ADHD and OCD, were associated with disorder-differential functional and structural abnormalities. Patients with ADHD showed smaller and underfunctioning ventrolateral prefrontal/insular-striatal regions whereas patients with OCD showed larger and hyperfunctioning insular-striatal regions that may be poorly controlled by smaller and underfunctioning rostro/dorsal medial prefrontal regions.
Biological Psychiatry | 2017
Christina O. Carlisi; Luke Norman; Steve Lukito; Joaquim Radua; David Mataix-Cols; Katya Rubia
BACKGROUND Autism spectrum disorder (ASD) and obsessive-compulsive disorder (OCD) share inhibitory control deficits possibly underlying poor control over stereotyped and repetitive and compulsive behaviors, respectively. However, it is unclear whether these symptom profiles are mediated by common or distinct neural profiles. This comparative multimodal meta-analysis assessed shared and disorder-specific neuroanatomy and neurofunction of inhibitory functions. METHODS A comparative meta-analysis of 62 voxel-based morphometry and 26 functional magnetic resonance imaging (fMRI) studies of inhibitory control was conducted comparing gray matter volume and activation abnormalities between patients with ASD (structural MRI: 911; fMRI: 188) and OCD (structural MRI: 928; fMRI: 247) and control subjects. Multimodal meta-analysis compared groups across voxel-based morphometry and fMRI. RESULTS Both disorders shared reduced function and structure in the rostral and dorsomedial prefrontal cortex including the anterior cingulate. OCD patients had a disorder-specific increase in structure and function of left basal ganglia (BG) and insula relative to control subjects and ASD patients, who had reduced right BG and insula volumes versus OCD patients. In fMRI, ASD patients showed disorder-specific reduced left dorsolateral-prefrontal activation and reduced posterior cingulate deactivation, whereas OCD patients showed temporoparietal underactivation. CONCLUSIONS The multimodal comparative meta-analysis shows shared and disorder-specific abnormalities. Whereas the rostrodorsomedial prefrontal cortex was smaller in structure and function in both disorders, this was concomitant with increased structure and function in BG and insula in OCD patients, but a reduction in ASD patients, presumably reflecting a disorder-specific frontostriatoinsular dysregulation in OCD in the form of poor frontal control over overactive BG, and a frontostriatoinsular maldevelopment in ASD with reduced structure and function in this network. Disorder-differential mechanisms appear to drive overlapping phenotypes of inhibitory control abnormalities in patients with ASD and OCD.
Social Cognitive and Affective Neuroscience | 2015
Luke Norman; Natalia Lawrence; Andrew Iles; Abdelmalek Benattayallah; Anke Karl
A predominant expectation that social relationships with others are safe (a secure attachment style), has been linked with reduced threat-related amygdala activation. Experimental priming of mental representations of attachment security can modulate neural responding, but the effects of attachment-security priming on threat-related amygdala activation remains untested. Using functional magnetic resonance imaging, the present study examined the effects of trait and primed attachment security on amygdala reactivity to threatening stimuli in an emotional faces and a linguistic dot-probe task in 42 healthy participants. Trait attachment anxiety and attachment avoidance were positively correlated with amygdala activation to threatening faces in the control group, but not in the attachment primed group. Furthermore, participants who received attachment-security priming showed attenuated amygdala activation in both the emotional faces and dot-probe tasks. The current findings demonstrate that variation in state and trait attachment security modulates amygdala reactivity to threat. These findings support the potential use of attachment security-boosting methods as interventions and suggest a neural mechanism for the protective effect of social bonds in anxiety disorders.
Psychological Medicine | 2016
Christina O. Carlisi; Kaylita Chantiluke; Luke Norman; Anastasia Christakou; Nadia Barrett; Vincent Giampietro; Michael Brammer; Andrew Simmons; Katya Rubia
BACKGROUND Serotonin is under-researched in attention deficit hyperactivity disorder (ADHD), despite accumulating evidence for its involvement in impulsiveness and the disorder. Serotonin further modulates temporal discounting (TD), which is typically abnormal in ADHD relative to healthy subjects, underpinned by reduced fronto-striato-limbic activation. This study tested whether a single acute dose of the selective serotonin reuptake inhibitor (SSRI) fluoxetine up-regulates and normalizes reduced fronto-striato-limbic neurofunctional activation in ADHD during TD. METHOD Twelve boys with ADHD were scanned twice in a placebo-controlled randomized design under either fluoxetine (between 8 and 15 mg, titrated to weight) or placebo while performing an individually adjusted functional magnetic resonance imaging TD task. Twenty healthy controls were scanned once. Brain activation was compared in patients under either drug condition and compared to controls to test for normalization effects. RESULTS Repeated-measures whole-brain analysis in patients revealed significant up-regulation with fluoxetine in a large cluster comprising right inferior frontal cortex, insula, premotor cortex and basal ganglia, which further correlated trend-wise with TD performance, which was impaired relative to controls under placebo, but normalized under fluoxetine. Fluoxetine further down-regulated default mode areas of posterior cingulate and precuneus. Comparisons between controls and patients under either drug condition revealed normalization with fluoxetine in right premotor-insular-parietal activation, which was reduced in patients under placebo. CONCLUSIONS The findings show that a serotonin agonist up-regulates activation in typical ADHD dysfunctional areas in right inferior frontal cortex, insula and striatum as well as down-regulating default mode network regions in the context of impulsivity and TD.
Human Brain Mapping | 2017
Analucia A. Alegria; Melanie Wulff; Helen Brinson; Gareth J. Barker; Luke Norman; Daniel Brandeis; Daniel Stahl; Anthony S. David; Eric Taylor; Vincent Giampietro; Katya Rubia
Attention Deficit Hyperactivity Disorder (ADHD) is associated with poor self‐control, underpinned by inferior fronto‐striatal deficits. Real‐time functional magnetic resonance neurofeedback (rtfMRI‐NF) allows participants to gain self‐control over dysregulated brain regions. Despite evidence for beneficial effects of electrophysiological‐NF on ADHD symptoms, no study has applied the spatially superior rtfMRI‐NF neurotherapy to ADHD. A randomized controlled trial tested the efficacy of rtfMRI‐NF of right inferior prefrontal cortex (rIFG), a key region that is compromised in ADHD and upregulated with psychostimulants, on improvement of ADHD symptoms, cognition, and inhibitory fMRI activation. To control for region‐specificity, an active control group received rtfMRI‐NF of the left parahippocampal gyrus (lPHG). Thirty‐one ADHD boys were randomly allocated and had to learn to upregulate their target brain region in an average of 11 rtfMRI‐NF runs over 2 weeks. Feedback was provided through a video‐clip of a rocket that had to be moved up into space. A transfer session without feedback tested learning retention as a proximal measure of transfer to everyday life. Both NF groups showed significant linear activation increases with increasing number of runs in their respective target regions and significant reduction in ADHD symptoms after neurotherapy and at 11‐month follow‐up. Only the group targeting rIFG, however, showed a transfer effect, which correlated with ADHD symptom reductions, improved at trend level in sustained attention, and showed increased IFG activation during an inhibitory fMRI task. This proof‐of‐concept study demonstrates for the first time feasibility, safety, and shorter‐ and longer‐term efficacy of rtfMRI‐NF of rIFG in adolescents with ADHD. Hum Brain Mapp 38:3190–3209, 2017.
Psychological Medicine | 2017
Christina O. Carlisi; Luke Norman; Clodagh Murphy; Anastasia Christakou; Kaylita Chantiluke; Vincent Giampietro; Andrew Simmons; Michael Brammer; Declan Murphy; David Mataix-Cols; Katya Rubia
Background Autism spectrum disorder (ASD) and obsessive-compulsive disorder (OCD) share abnormalities in hot executive functions such as reward-based decision-making, as measured in the temporal discounting task (TD). No studies, however, have directly compared these disorders to investigate common/distinct neural profiles underlying such abnormalities. We wanted to test whether reward-based decision-making is a shared transdiagnostic feature of both disorders with similar neurofunctional substrates or whether it is a shared phenotype with disorder-differential neurofunctional underpinnings. Methods Age and IQ-matched boys with ASD (N = 20), with OCD (N = 20) and 20 healthy controls, performed an individually-adjusted functional magnetic resonance imaging (fMRI) TD task. Brain activation and performance were compared between groups. Results Boys with ASD showed greater choice-impulsivity than OCD and control boys. Whole-brain between-group comparison revealed shared reductions in ASD and OCD relative to control boys for delayed-immediate choices in right ventromedial/lateral orbitofrontal cortex extending into medial/inferior prefrontal cortex, and in cerebellum, posterior cingulate and precuneus. For immediate-delayed choices, patients relative to controls showed reduced activation in anterior cingulate/ventromedial prefrontal cortex reaching into left caudate, which, at a trend level, was more decreased in ASD than OCD patients, and in bilateral temporal and inferior parietal regions. Conclusions This first fMRI comparison between youth with ASD and with OCD, using a reward-based decision-making task, shows predominantly shared neurofunctional abnormalities during TD in key ventromedial, orbital- and inferior fronto-striatal, temporo-parietal and cerebellar regions of temporal foresight and reward processing, suggesting trans-diagnostic neurofunctional deficits.
NeuroImage: Clinical | 2017
Luke Norman; Christina O. Carlisi; Anastasia Christakou; Ana Cubillo; Clodagh Murphy; Kaylita Chantiluke; Andrew Simmons; Vincent Giampietro; Michael Brammer; David Mataix-Cols; Katya Rubia
Patients with Attention-Deficit/Hyperactivity Disorder (ADHD) and obsessive/compulsive disorder (OCD) share problems with sustained attention, and are proposed to share deficits in switching between default mode and task positive networks. The aim of this study was to investigate shared and disorder-specific brain activation abnormalities during sustained attention in the two disorders. Twenty boys with ADHD, 20 boys with OCD and 20 age-matched healthy controls aged between 12 and 18 years completed a functional magnetic resonance imaging (fMRI) version of a parametrically modulated sustained attention task with a progressively increasing sustained attention load. Performance and brain activation were compared between groups. Only ADHD patients were impaired in performance. Group by sustained attention load interaction effects showed that OCD patients had disorder-specific middle anterior cingulate underactivation relative to controls and ADHD patients, while ADHD patients showed disorder-specific underactivation in left dorsolateral prefrontal cortex/dorsal inferior frontal gyrus (IFG). ADHD and OCD patients shared left insula/ventral IFG underactivation and increased activation in posterior default mode network relative to controls, but had disorder-specific overactivation in anterior default mode regions, in dorsal anterior cingulate for ADHD and in anterior ventromedial prefrontal cortex for OCD. In sum, ADHD and OCD patients showed mostly disorder-specific patterns of brain abnormalities in both task positive salience/ventral attention networks with lateral frontal deficits in ADHD and middle ACC deficits in OCD, as well as in their deactivation patterns in medial frontal DMN regions. The findings suggest that attention performance in the two disorders is underpinned by disorder-specific activation patterns.
Biological Psychiatry: Cognitive Neuroscience and Neuroimaging | 2017
Christina O. Carlisi; Luke Norman; Clodagh Murphy; Anastasia Christakou; Kaylita Chantiluke; Vincent Giampietro; Andrew Simmons; Michael Brammer; Declan Murphy; David Mataix-Cols; Katya Rubia
Background Autism spectrum disorder (ASD) and obsessive-compulsive disorder (OCD) are often comorbid and share similarities across some cognitive phenotypes, including certain aspects of attention. However, no functional magnetic resonance imaging studies have compared the underlying neural mechanisms contributing to these shared phenotypes. Methods Age- and IQ-matched boys (11–17 years old) with ASD (n = 20), boys with OCD (n = 20), and healthy control boys (n = 20) performed a parametrically modulated psychomotor vigilance functional magnetic resonance imaging task. Brain activation and performance were compared among adolescents with OCD, adolescents with ASD, and control adolescents. Results Whereas boys with ASD and OCD were not impaired on task performance, there was a significant group by attention load interaction in several brain regions. With increasing attention load, left inferior frontal cortex/insula and left inferior parietal lobe/pre/post-central gyrus were progressively less activated in boys with OCD relative to the other two groups. In addition, boys with OCD showed progressively increased activation with increasing attention load in rostromedial prefrontal/anterior cingulate cortex relative to boys with ASD and control boys. Shared neurofunctional abnormalities between boys with ASD and boys with OCD included increased activation with increasing attention load in cerebellum and occipital regions, possibly reflecting increased default mode network activation. Conclusions This first functional magnetic resonance imaging study to compare boys with ASD and OCD showed shared abnormalities in posterior cerebellar–occipital brain regions. However, boys with OCD showed a disorder-specific pattern of reduced activation in left inferior frontal and temporo-parietal regions but increased activation of medial frontal regions, which may potentially be related to neurobiological mechanisms underlying cognitive and clinical phenotypes of OCD.
Psychiatry Research-neuroimaging | 2017
Luke Norman; Christina O. Carlisi; Anastasia Christakou; Kaylita Chantiluke; Clodagh Murphy; Andrew Simmons; Vincent Giampietro; Michael Brammer; David Mataix-Cols; Katya Rubia
Both Attention-Deficit/Hyperactivity Disorder (ADHD) and Obsessive-Compulsive Disorder (OCD) are associated with choice impulsivity, i.e. the tendency to prefer smaller immediate rewards over larger delayed rewards. However, the extent to which this impulsivity is mediated by shared or distinct underlying neural mechanisms is unclear. Twenty-six boys with ADHD, 20 boys with OCD and 20 matched controls (aged 12–18) completed an fMRI version of an individually adjusted temporal discounting (TD) task which requires choosing between a variable amount of money now or £100 in one week, one month or one year. Activations to immediate and delayed reward choices were compared between groups using a three-way ANCOVA. ADHD patients had steeper discounting rates on the task relative to controls. OCD patients did not differ from controls or patients with ADHD. Patients with ADHD and OCD showed predominantly shared activation deficits during TD in fronto-striato-insular-cerebellar regions responsible for self-control and temporal foresight, suggesting that choice impulsivity is mediated by overlapping neural dysfunctions in both disorders. OCD patients alone showed dysfunction relative to controls in right orbitofrontal and rostrolateral prefrontal cortex, extending previous findings of abnormalities in these regions in OCD to the domain of choice impulsiveness.
Cerebral Cortex | 2017
Christina O. Carlisi; Luke Norman; Clodagh Murphy; Anastasia Christakou; Kaylita Chantiluke; Vincent Giampietro; Andrew Simmons; Michael Brammer; Declan Murphy; David Mataix-Cols; Katya Rubia
Abstract Autism spectrum disorder (ASD) and obsessive‐compulsive disorder (OCD) often share phenotypes of repetitive behaviors, possibly underpinned by abnormal decision‐making. To compare neural correlates underlying decision‐making between these disorders, brain activation of boys with ASD (N = 24), OCD (N = 20) and typically developing controls (N = 20) during gambling was compared, and computational modeling compared performance. Patients were unimpaired on number of risky decisions, but modeling showed that both patient groups had lower choice consistency and relied less on reinforcement learning compared to controls. ASD individuals had disorder‐specific choice perseverance abnormalities compared to OCD individuals. Neurofunctionally, ASD and OCD boys shared dorsolateral/inferior frontal underactivation compared to controls during decision‐making. During outcome anticipation, patients shared underactivation compared to controls in lateral inferior/orbitofrontal cortex and ventral striatum. During reward receipt, ASD boys had disorder‐specific enhanced activation in inferior frontal/insular regions relative to OCD boys and controls. Results showed that ASD and OCD individuals shared decision‐making strategies that differed from controls to achieve comparable performance to controls. Patients showed shared abnormalities in lateral‐(orbito)fronto‐striatal reward circuitry, but ASD boys had disorder‐specific lateral inferior frontal/insular overactivation, suggesting that shared and disorder‐specific mechanisms underpin decision‐making in these disorders. Findings provide evidence for shared neurobiological substrates that could serve as possible future biomarkers.