Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luong N. Nguyen is active.

Publication


Featured researches published by Luong N. Nguyen.


Bioresource Technology | 2012

Removal of trace organic contaminants by a membrane bioreactor-granular activated carbon (MBR-GAC) system.

Luong N. Nguyen; Faisal I. Hai; Jinguo Kang; William E. Price; Long D. Nghiem

The removal of trace organics by a membrane bioreactor-granular activated carbon (MBR-GAC) integrated system were investigated. The results confirmed that MBR treatment can be effective for the removal of hydrophobic (log D>3.2) and readily biodegradable trace organics. The data also highlighted the limitation of MBR in removing hydrophilic and persistent compounds (e.g. carbamazepine, diclofenac, and fenoprop) and that GAC could complement MBR very well as a post-treatment process. The MBR-GAC system showed high removal of all selected trace organics including those that are hydrophilic and persistent to biological degradation at up to 406 bed volumes (BV). However, over an extended period, breakthrough of diclofenac was observed after 7320 BV. This suggests that strict monitoring should be applied over the lifetime of the GAC column to detect the breakthrough of hydrophilic and persistent compounds which have low removal by MBR treatment.


Bioresource Technology | 2013

Removal of trace organic contaminants by an MBR comprising a mixed culture of bacteria and white-rot fungi

Luong N. Nguyen; Faisal I. Hai; Shufan Yang; Jinguo Kang; Frederic D.L. Leusch; Felicity A. Roddick; William E. Price; Long D. Nghiem

The degradation of 30 trace organic contaminants (TrOC) by a white-rot fungus-augmented membrane bioreactor (MBR) was investigated. The results show that white-rot fungal enzyme (laccase), coupled with a redox mediator (1-hydroxy benzotriazole, HBT), could degrade TrOC that are resistant to bacterial degradation (e.g. diclofenac, triclosan, naproxen and atrazine) but achieved low removal of compounds (e.g. ibuprofen, gemfibrozil and amitriptyline) that are well removed by conventional activated sludge treatment. Overall, the fungus-augmented MBR showed better TrOC removal compared to a system containing conventional activated sludge. The major role of biodegradation in removal by the MBR was noted. Continuous mediator dosing to MBR may potentially enhance its performance, although not as effectively as for mediator-enhanced batch laccase systems. A ToxScreen3 assay revealed no significant increase in the toxicity of the effluent during MBR treatment of the synthetic wastewater comprising TrOC, confirming that no toxic by-products were produced.


Bioresource Technology | 2014

The effects of mediator and granular activated carbon addition on degradation of trace organic contaminants by an enzymatic membrane reactor

Luong N. Nguyen; Faisal I. Hai; William E. Price; Frederic D.L. Leusch; Felicity A. Roddick; Hao H. Ngo; Wenshan Guo; Saleh Faraj Magram; Long D. Nghiem

The removal of four recalcitrant trace organic contaminants (TrOCs), namely carbamazepine, diclofenac, sulfamethoxazole and atrazine by laccase in an enzymatic membrane reactor (EMR) was studied. Laccases are not effective for degrading non-phenolic compounds; nevertheless, 22-55% removal of these four TrOCs was achieved by the laccase EMR. Addition of the redox-mediator syringaldehyde (SA) to the EMR resulted in a notable dose-dependent improvement (15-45%) of TrOC removal affected by inherent TrOC properties and loading rates. However, SA addition resulted in a concomitant increase in the toxicity of the treated effluent. A further 14-25% improvement in aqueous phase removal of the TrOCs was consistently observed following a one-off dosing of 3g/L granular activated carbon (GAC). Mass balance analysis reveals that this improvement was not due solely to adsorption but also enhanced biodegradation. GAC addition also reduced membrane fouling and the SA-induced toxicity of the effluent.


Bioresource Technology | 2013

Comparison between sequential and simultaneous application of activated carbon with membrane bioreactor for trace organic contaminant removal

Luong N. Nguyen; Faisal I. Hai; Jinguo Kang; Long D. Nghiem; William E. Price; Wenshan Guo; H Ngo; Kuo-Lun Tung

The removal efficiency of 22 selected trace organic contaminants by sequential application of granular activated carbon (GAC) and simultaneous application of powdered activated carbon (PAC) with membrane bioreactor (MBR) was compared in this study. Both sequential application of GAC following MBR treatment (MBR-GAC) and simultaneous application of PAC within MBR (PAC-MBR) achieved improved removal (over 95%) of seven hydrophilic and biologically persistent compounds, which were less efficiently removed by MBR-only treatment (negligible to 70%). However, gradual breakthrough of these compounds occurred over an extended operation period. Charged compounds, particularly, fenoprop and diclofenac, demonstrated the fastest breakthrough (complete and 50-70%, in MBR-GAC and PAC-MBR, respectively). Based on a simple comparison from the long-term performance stability and activated carbon usage points of view, PAC-MBR appears to be a better option than MBR-GAC treatment.


Bioresource Technology | 2016

Continuous adsorption and biotransformation of micropollutants by granular activated carbon-bound laccase in a packed-bed enzyme reactor

Luong N. Nguyen; Faisal I. Hai; Anthony Dosseto; Christopher Richardson; William E. Price; Long D. Nghiem

Laccase was immobilized on granular activated carbon (GAC) and the resulting GAC-bound laccase was used to degrade four micropollutants in a packed-bed column. Compared to the free enzyme, the immobilized laccase showed high residual activities over a broad range of pH and temperature. The GAC-bound laccase efficiently removed four micropollutants, namely, sulfamethoxazole, carbamazepine, diclofenac and bisphenol A, commonly detected in raw wastewater and wastewater-impacted water sources. Mass balance analysis showed that these micropollutants were enzymatically degraded following adsorption onto GAC. Higher degradation efficiency of micropollutants by the immobilized compared to free laccase was possibly due to better electron transfer between laccase and substrate molecules once they have adsorbed onto the GAC surface. Results here highlight the complementary effects of adsorption and enzymatic degradation on micropollutant removal by GAC-bound laccase. Indeed laccase-immobilized GAC outperformed regular GAC during continuous operation of packed-bed columns over two months (a throughput of 12,000 bed volumes).


Bioresource Technology | 2016

Laccase–syringaldehyde-mediated degradation of trace organic contaminants in an enzymatic membrane reactor: Removal efficiency and effluent toxicity

Luong N. Nguyen; Jason P. van de Merwe; Faisal I. Hai; Frederic D.L. Leusch; Jinguo Kang; William E. Price; Felicity A. Roddick; Saleh Faraj Magram; Long D. Nghiem

Redox-mediators such as syringaldehyde (SA) can improve laccase-catalyzed degradation of trace organic contaminants (TrOCs) but may increase effluent toxicity. The degradation performance of 14 phenolic and 17 non-phenolic TrOCs by a continuous flow enzymatic membrane reactor (EMR) at different TrOC and SA loadings was assessed. A specific emphasis was placed on the investigation of the toxicity of the enzyme (laccase), SA, TrOCs and the treated effluent. Batch tests demonstrated significant individual and interactive toxicity of the laccase and SA preparations. Reduced removal of resistant TrOCs by the EMR was observed for dosages over 50μg/L. SA addition at a concentration of 10μM significantly improved TrOC removal, but no removal improvement was observed at the elevated SA concentrations of 50 and 100μM. The treated effluent showed significant toxicity at SA concentrations beyond 10μM, providing further evidence that higher dosage of SA must be avoided.


Archive | 2014

Trace Organic Contaminants Removal by Combined Processes for Wastewater Reuse

Faisal I. Hai; Luong N. Nguyen; Long D. Nghiem; Bao-Qiang Liao; Ismail Koyuncu; William E. Price

The term trace organic contaminant (TrOC) refers to a diverse and expanding array of natural as well as anthropogenic substances including industrial chemicals, chemicals used in households, compounds and their metabolites excreted by people and by-products formed during wastewater and drinking-water treatment processes. Activated sludge-based processes (e.g. membrane bioreactor) are environmentally friendly approaches to wastewater treatment. However, conventional biological treatment alone may not be effective for all TrOCs that are known to occur in municipal and industrial wastewater. The low removal efficiency of biologically persistent and hydrophilic TrOCs necessitates the integration of MBR with other membrane-based and physicochemical processes to ensure adequate removal of TrOCs. Because MBRs can produce effluent with low turbidity and bulk organic content, significant synergy can be realised when it is integrated with other advanced treatment processes. In addition, given the small physical footprint of the MBR process, it is possible to deploy these integrated systems for decentralised water recycling applications. This chapter provides a brief overview of the integration of advanced treatment processes including activated carbon adsorption, advanced oxidation processes and high retention membranes (e.g. nanofiltration and reverse osmosis) with MBR for TrOC removal.


Water Science and Technology | 2017

Continuous transformation of chiral pharmaceuticals in enzymatic membrane bioreactors for advanced wastewater treatment

Luong N. Nguyen; Faisal I. Hai; James A. McDonald; Stuart J. Khan; William E. Price; Long D. Nghiem

This study demonstrates continuous enantiomeric inversion and further biotransformation of chiral profens including ibuprofen, naproxen and ketoprofen by an enzymatic membrane bioreactor (EMBR) dosed with laccase. The EMBR showed non-enantioselective transformations, with high and consistent transformation of both (R)- and (S)-ibuprofen (93 ± 6%, n = 10), but lower removals of both enantiomers of naproxen (46 ± 16%, n = 10) and ketoprofen (48 ± 17%, n = 10). Enantiomeric analysis revealed a bidirectional but uneven inversion of the profens, for example 14% inversion of (R)- to (S)- compared to 4% from (S)- to (R)-naproxen. With redox-mediator addition, the enzymatic chiral inversion of both (R)- and (S)-profens remained unchanged, although the overall conversion became enantioselective; except for (S)-naproxen, the addition of redox mediator promoted the degradation of (R)-profens only.


Chemosphere | 2018

Aerobic biotransformation of the antibiotic ciprofloxacin by Bradyrhizobium sp. isolated from activated sludge

Luong N. Nguyen; Long D. Nghiem; Seungdae Oh

Ciprofloxacin (CIP) is an antibiotic that is widely used to treat bacterial infections and is poorly biodegraded during wastewater treatment. In this study, a CIP-degrading bacterial strain (GLC_01) was successfully retrieved from activated sludge by enrichment and isolation. The obtained bacterial strain shares over 99% nucleotide identity of the 16S rRNA gene with Bradyrhizobium spp. Results show that Bradyrhizobium sp. GLC_01 degraded CIP via cometabolism with another carbon substrate following a first-order kinetics degradation reaction. CIP degradation by Bradyrhizobium sp. GLC_01 increased when the concentration of the primary carbon source increased. The biodegradability of the primary carbon source also affected CIP degradation. The use of glucose and sodium acetate (i.e. readily biodegradable), respectively, as a primary carbon source enhanced CIP biotransformation, compared to starch (i.e. relatively slowly biodegradable). CIP degradation decreased with the increase of the initial CIP concentration. Over 70% CIP biotransformation was achieved at 0.05 mg L-1 whereas CIP degradation decreased to 26% at 10 mg L-1. The phylogenetic identification and experimental verification of this CIP-degrading bacterium can lead to a bioengineering approach to manage antibiotics and possibly other persistent organic contaminants during wastewater treatment.


Biocatalysis and Biotransformation | 2017

Impact of inorganic salts on degradation of bisphenol A and diclofenac by crude extracellular enzyme from Pleurotus ostreatus

Alexander Chapple; Luong N. Nguyen; Faisal I. Hai; Anthony Dosseto; Md. Harun-Or Rashid; Seungdae Oh; William E. Price; Long D. Nghiem

Abstract This study investigated the influence of inorganic salts on enzymatic activity and the removal of trace organic contaminants (TrOCs) by crude laccase from the white-rot fungus Pleurotus ostreatus. A systematic analysis of 15 cations and anions from common inorganic salts was presented. Laccase activity was not inhibited by monovalent cations (i.e. Na+, NH4+, K+), while the presence of divalent and trivalent cations showed variable impact – from negligible to complete inhibition – of both laccase activity and its TrOC removal performance. Of interest was the observation of discrepancy between residual laccase activity and TrOC removal in the presence of some ions. Mg2+ had negligible impact on residual laccase activity but significant impact on TrOC removal. Conversely, F− showed greater impact on residual laccase activity than on TrOC removal. This observation indicated different impacts of the interfering ions on the interaction between laccase and TrOCs as compared to that between laccase and the reagent used to measure its activity, implicating that residual laccase activity may not always be an accurate indicator of TrOC removal. The degree of impact of halides was in the order of F− > I− > Br− > Cl−. Particularly, the tolerance of the tested laccase to Cl− has important implications for a range of industrial applications.

Collaboration


Dive into the Luong N. Nguyen's collaboration.

Top Co-Authors

Avatar

Faisal I. Hai

University of Wollongong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jinguo Kang

University of Wollongong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shufan Yang

University of Wollongong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge