Luqman Seidu
Cincinnati Children's Hospital Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Luqman Seidu.
Journal of Experimental Medicine | 2008
Elizabeth Forbes; Katherine Groschwitz; J. Pablo Abonia; Eric B. Brandt; Elizabeth Cohen; Carine Blanchard; Richard Ahrens; Luqman Seidu; Andrew N. J. McKenzie; Richard T. Strait; Fred D. Finkelman; Paul S. Foster; Klaus I. Matthaei; Marc E. Rothenberg; Simon P. Hogan
Previous mouse and clinical studies demonstrate a link between Th2 intestinal inflammation and induction of the effector phase of food allergy. However, the mechanism by which sensitization and mast cell responses occurs is largely unknown. We demonstrate that interleukin (IL)-9 has an important role in this process. IL-9–deficient mice fail to develop experimental oral antigen–induced intestinal anaphylaxis, and intestinal IL-9 overexpression induces an intestinal anaphylaxis phenotype (intestinal mastocytosis, intestinal permeability, and intravascular leakage). In addition, intestinal IL-9 overexpression predisposes to oral antigen sensitization, which requires mast cells and increased intestinal permeability. These observations demonstrate a central role for IL-9 and mast cells in experimental intestinal permeability in oral antigen sensitization and suggest that IL-9–mediated mast cell responses have an important role in food allergy.
Journal of Immunology | 2008
Richard Ahrens; Amanda Waddell; Luqman Seidu; Carine Blanchard; Rebecca Carey; Elizabeth Forbes; Maria Lampinen; Tara Wilson; Elizabeth Cohen; Keith F. Stringer; Edgar Ballard; Ariel Munitz; Huan Xu; Nancy A. Lee; James J. Lee; Marc E. Rothenberg; Lee A. Denson; Simon P. Hogan
Clinical studies have demonstrated a link between the eosinophil-selective chemokines, eotaxins (eotaxin-1/CCL11 and eotaxin-2/CCL24), eosinophils, and the inflammatory bowel diseases, Crohn’s disease and ulcerative colitis (UC). However, the cellular source and individual contribution of the eotaxins to colonic eosinophilic accumulation in inflammatory bowel diseases remain unclear. In this study we demonstrate, by gene array and quantitative PCR, elevated levels of eotaxin-1 mRNA in the rectosigmoid colon of pediatric UC patients. We show that elevated levels of eotaxin-1 mRNA positively correlated with rectosigmoid eosinophil numbers. Further, colonic eosinophils appeared to be degranulating, and the levels positively correlated with disease severity. Using the dextran sodium sulfate (DSS)-induced intestinal epithelial injury model, we show that DSS treatment of mice strongly induced colonic eotaxin-1 and eotaxin-2 expression and eosinophil levels. Analysis of eosinophil-deficient mice defined an effector role for eosinophils in disease pathology. DSS treatment of eotaxin-2−/− and eotaxin-1/2−/− mice demonstrated that eosinophil recruitment was dependent on eotaxin-1. In situ and immunofluorescence analysis-identified eotaxin-1 expression was restricted to intestinal F4/80+CD11b+ macrophages in DSS-induced epithelial injury and to CD68+ intestinal macrophages and the basolateral compartment of intestinal epithelial cells in pediatric UC. These data demonstrate that intestinal macrophage and epithelial cell-derived eotaxin-1 plays a critical role in the regulation of eosinophil recruitment in colonic eosinophilic disease such as pediatric UC and provides a basis for targeting the eosinophil/eotaxin-1 axis in UC.
The Journal of Allergy and Clinical Immunology | 2008
Ariel Munitz; Amanda Waddell; Luqman Seidu; Eric T. Cole; Richard Ahrens; Simon P. Hogan; Marc E. Rothenberg
BACKGROUND Resistin-like molecule (Relm) alpha is a secreted protein and a hallmark signature gene for alternatively activated macrophages. Relm-alpha is highly induced by allergic inflammatory triggers and perceived to promote tissue repair. Yet the function of Relm-alpha remains unknown. OBJECTIVE We sough to determine the role of Relm-alpha in dextran sodium sulfate (DSS)-induced colonic injury. METHODS The cellular source of Relm-alpha was determined after oral DSS-induced colitis. Retnla(-/-) mice were generated, subjected to DSS treatment, and monitored for disease progression (clinical and histopathologic features). Cytokine production in the supernatants of ex vivo colon cultures, and of LPS-stimulated macrophages incubated with Relm-alpha was assessed. Relm-alpha was administered intraperitoneally, and the cellular recruitment to the peritoneum was assessed. RESULTS After innate intestinal stimulation with DSS, Relm-alpha was highly expressed by eosinophils and epithelial cells. Retnla gene-targeted mice were protected from DSS-induced colitis (eg, decreased diarrhea, rectal bleeding, colon shortening, disease score, and histopathologic changes). Relm-alpha coactivated IL-6 and TNF-alpha release and inhibited IL-10 release from LPS-activated bone marrow-derived macrophages. Consistent with these finding, colon cultures of DSS-treated Retnla(-/-) mice produced decreased IL-6 and increased IL-10 ex vivo. Furthermore, Retnla(-/-) mice had substantially decreased c-Jun N-terminal kinase phosphorylation in vivo. In vivo administration of Relm-alpha initiated cellular recruitment to the peritoneum, and Relm-alpha was able to induce eosinophil chemotaxis in vitro. CONCLUSIONS These findings demonstrate a central proinflammatory role for Relm-alpha in colonic innate immune responses, identifying a novel pathway for regulation of macrophage activation.
Journal of Immunology | 2009
Ariel Munitz; Luqman Seidu; Eric T. Cole; Richard C. Ahrens; Simon P. Hogan; Marc E. Rothenberg
Resistin-like molecule α (Relm-α) is a secreted cysteine-rich protein belonging to a newly defined family of proteins, including resistin, Relm-β, and Relm-γ. Resistin was initially defined based on its insulin resistance activity, but the family members are highly up-regulated in various inflammatory states, especially those involving intestinal inflammation. In this study, we report the role of Relm-α at baseline and following an experimental model of colitis. Relm-α was readily detected in the serum at baseline (4–5 ng/ml), and its level was regulated by energy uptake. Retnla−/− mice had decreased baseline circulating leptin levels, but displayed normal glucose, glucose clearance, and insulin levels. Following exposure to the oral innate trigger dextran sodium sulfate (DSS), a nonredundant proinflammatory role for Relm-α was uncovered as Retnla−/− mice were markedly protected from DSS-induced disease activity and histopathological features. Relm-α regulated eosinophil-directed cytokines (e.g., IL-5, CCL11/eotaxin-1, and CCL5/RANTES) and IL-17 ex vivo. Consistently, DSS-treated Retnla−/− mice displayed substantially decreased eosinophil accumulation and decreased phosphorylation of NF-κB, ERK1/2, and p38 in macrophages and eosinophils. Following DSS exposure, serum level of Relm-α was up-regulated, and DSS-treated Retnla−/− mice were markedly protected from hyperglycemia induced by glucose injection independent of changes in insulin levels. Retnla−/− mice were protected from increases in gut hormone serum levels of gastric inhibitory polypeptide and peptide YY that were induced following DSS treatment. These findings demonstrate a central proinflammatory role for Relm-α in the regulation of colonic inflammation and a novel link between colonic injury, glucose tolerance, and energy intake.
The Journal of Allergy and Clinical Immunology | 2006
Simon P. Hogan; Luqman Seidu; Carine Blanchard; Katherine R. Groschwitz; Anil Mishra; Margaret Karow; Richard Ahrens; David Artis; Andrew J. Murphy; David M. Valenzuela; George D. Yancopoulos; Marc E. Rothenberg
Journal of Managed Care Pharmacy | 2017
Sean Kearns; Loretta Kristofek; William Bolgar; Luqman Seidu; Samantha Kile
The Journal of Allergy and Clinical Immunology | 2013
Sean Kearns; Keith Crawford; Loretta Kristofek; Robbyn Kirylo; Luqman Seidu
The Journal of Allergy and Clinical Immunology | 2015
Sean Kearns; Loretta Kristofek; Bill Bolgar; Luqman Seidu
Neurology | 2015
Sean Kearns; Loretta Kristofek; Bill Bolgar; Luqman Seidu
The Journal of Allergy and Clinical Immunology | 2014
Sean Kearns; Keith Crawford; Loretta Kristofek; Robbyn Kirylo; Luqman Seidu