Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lutz Bachmann is active.

Publication


Featured researches published by Lutz Bachmann.


Nucleic Acids Research | 2013

Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads—a baiting and iterative mapping approach

Christoph Hahn; Lutz Bachmann; Bastien Chevreux

We present an in silico approach for the reconstruction of complete mitochondrial genomes of non-model organisms directly from next-generation sequencing (NGS) data—mitochondrial baiting and iterative mapping (MITObim). The method is straightforward even if only (i) distantly related mitochondrial genomes or (ii) mitochondrial barcode sequences are available as starting-reference sequences or seeds, respectively. We demonstrate the efficiency of the approach in case studies using real NGS data sets of the two monogenean ectoparasites species Gyrodactylus thymalli and Gyrodactylus derjavinoides including their respective teleost hosts European grayling (Thymallus thymallus) and Rainbow trout (Oncorhynchus mykiss). MITObim appeared superior to existing tools in terms of accuracy, runtime and memory requirements and fully automatically recovered mitochondrial genomes exceeding 99.5% accuracy from total genomic DNA derived NGS data sets in <24 h using a standard desktop computer. The approach overcomes the limitations of traditional strategies for obtaining mitochondrial genomes for species with little or no mitochondrial sequence information at hand and represents a fast and highly efficient in silico alternative to laborious conventional strategies relying on initial long-range PCR. We furthermore demonstrate the applicability of MITObim for metagenomic/pooled data sets using simulated data. MITObim is an easy to use tool even for biologists with modest bioinformatics experience. The software is made available as open source pipeline under the MIT license at https://github.com/chrishah/MITObim.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Polar and brown bear genomes reveal ancient admixture and demographic footprints of past climate change

Webb Miller; Stephan C. Schuster; Andreanna J. Welch; Aakrosh Ratan; Oscar C. Bedoya-Reina; Fangqing Zhao; Hie Lim Kim; Richard Burhans; Daniela I. Drautz; Nicola E. Wittekindt; Lynn P. Tomsho; Enrique Ibarra-Laclette; Luis Herrera-Estrella; Elizabeth Peacock; Sean D. Farley; George K. Sage; Karyn D. Rode; Martyn E. Obbard; Rafael Montiel; Lutz Bachmann; Ólafur Ingólfsson; Jon Aars; Thomas Mailund; Øystein Wiig; Sandra L. Talbot; Charlotte Lindqvist

Polar bears (PBs) are superbly adapted to the extreme Arctic environment and have become emblematic of the threat to biodiversity from global climate change. Their divergence from the lower-latitude brown bear provides a textbook example of rapid evolution of distinct phenotypes. However, limited mitochondrial and nuclear DNA evidence conflicts in the timing of PB origin as well as placement of the species within versus sister to the brown bear lineage. We gathered extensive genomic sequence data from contemporary polar, brown, and American black bear samples, in addition to a 130,000- to 110,000-y old PB, to examine this problem from a genome-wide perspective. Nuclear DNA markers reflect a species tree consistent with expectation, showing polar and brown bears to be sister species. However, for the enigmatic brown bears native to Alaskas Alexander Archipelago, we estimate that not only their mitochondrial genome, but also 5–10% of their nuclear genome, is most closely related to PBs, indicating ancient admixture between the two species. Explicit admixture analyses are consistent with ancient splits among PBs, brown bears and black bears that were later followed by occasional admixture. We also provide paleodemographic estimates that suggest bear evolution has tracked key climate events, and that PB in particular experienced a prolonged and dramatic decline in its effective population size during the last ca. 500,000 years. We demonstrate that brown bears and PBs have had sufficiently independent evolutionary histories over the last 4–5 million years to leave imprints in the PB nuclear genome that likely are associated with ecological adaptation to the Arctic environment.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Complete mitochondrial genome of a Pleistocene jawbone unveils the origin of polar bear

Charlotte Lindqvist; Stephan C. Schuster; Yazhou Sun; Sandra L. Talbot; Ji Qi; Aakrosh Ratan; Lynn P. Tomsho; Lindsay R. Kasson; Eve Zeyl; Jon Aars; Webb Miller; Ólafur Ingólfsson; Lutz Bachmann; Øystein Wiig

The polar bear has become the flagship species in the climate-change discussion. However, little is known about how past climate impacted its evolution and persistence, given an extremely poor fossil record. Although it is undisputed from analyses of mitochondrial (mt) DNA that polar bears constitute a lineage within the genetic diversity of brown bears, timing estimates of their divergence have differed considerably. Using next-generation sequencing technology, we have generated a complete, high-quality mt genome from a stratigraphically validated 130,000- to 110,000-year-old polar bear jawbone. In addition, six mt genomes were generated of extant polar bears from Alaska and brown bears from the Admiralty and Baranof islands of the Alexander Archipelago of southeastern Alaska and Kodiak Island. We show that the phylogenetic position of the ancient polar bear lies almost directly at the branching point between polar bears and brown bears, elucidating a unique morphologically and molecularly documented fossil link between living mammal species. Molecular dating and stable isotope analyses also show that by very early in their evolutionary history, polar bears were already inhabitants of the Artic sea ice and had adapted very rapidly to their current and unique ecology at the top of the Arctic marine food chain. As such, polar bears provide an excellent example of evolutionary opportunism within a widespread mammalian lineage.


International Journal for Parasitology | 2003

Mitochondrial DNA variation of Gyrodactylus spp. (Monogenea, Gyrodactylidae) populations infecting Atlantic salmon, grayling, and rainbow trout in Norway and Sweden

Haakon Hansen; Lutz Bachmann; Tor A. Bakke

Approximately 800 bp of the mitochondrial cytochrome oxidase I (COI) gene were sequenced from 76 Gyrodactylus specimens of 32 salmonid host populations, i.e. from Salmo salar, Thymallus thymallus, and Oncorhynchus mykiss in Norway, Sweden and Latvia. The COI sequences indicated a substantial intraspecific differentiation of Gyrodactylus salaris and Gyrodactylus thymalli. In total, 12 haplotypes were identified which group into five well supported clades, three clades with parasites from Atlantic salmon and two clades with parasites from grayling. The basal nodes linking the five clades together are only weakly supported. Thus, there is no support for the monophyly of all G. salaris haplotypes and the monophyly of all G. thymalli haplotypes. The lack of monophyly of the mitochondrial haplotypes of G. salaris and G. thymalli may indicate that G. salaris and G. thymalli represent (i). two polytypic species or (ii). one polytypic species, or (iii). refer to a complex of more than two sibling species. The mtDNA data indicate multiple introductions of G. salaris and G. thymalli into Norway. A minimum of three independent introductions of G. salaris and two independent introductions of G. thymalli are supported. This is congruent with earlier hypotheses on the introduction of G. salaris and G. thymalli into Norway.


BMC Evolutionary Biology | 2008

Microsatellite evolution: Mutations, sequence variation, and homoplasy in the hypervariable avian microsatellite locus HrU10

Jarl Andreas Anmarkrud; Oddmund Kleven; Lutz Bachmann; Jan T. Lifjeld

BackgroundMicrosatellites are frequently used genetic markers in a wide range of applications, primarily due to their high length polymorphism levels that can easily be genotyped by fragment length analysis. However, the mode of microsatellite evolution is yet not fully understood, and the role of interrupting motifs for the stability of microsatellites remains to be explored in more detail. Here we present a sequence analysis of mutation events and a description of the structure of repeated regions in the hypervariable, pentanucleotide microsatellite locus HrU10 in barn swallows (Hirundo rustica) and tree swallows (Tachycineta bicolor).ResultsIn a large-scale parentage analysis in barn swallows and tree swallows, broods were screened for mutations at the HrU10 locus. In 41 cases in the barn swallows and 15 cases in the tree swallows, mutations corresponding to the loss or gain of one or two repeat units were detected. The parent and mutant offspring alleles were sequenced for 33 of these instances (26 in barn swallows and 7 in tree swallows). Replication slippage was considered the most likely mutational process. We tested the hypothesis that HrU10, a microsatellite with a wide allele size range, has an increased probability of introductions of interruptive motifs (IMs) with increasing length of the repeated region. Indeed, the number and length of the IMs was strongly positively correlated with the total length of the microsatellite. However, there was no significant correlation with the length of the longest stretch of perfectly repeated units, indicating a threshold level for the maximum length of perfectly repeated pentanucleotide motifs in stable HrU10 alleles. The combination of sequence and pedigree data revealed that 15 barn swallow mutations (58%) produced alleles that were size homoplasic to other alleles in the data set.ConclusionOur results give further insights into the mode of microsatellite evolution, and support the assumption of increased slippage rate with increased microsatellite length and a stabilizing effect of interrupting motifs for microsatellite regions consisting of perfect repeats. In addition, the observed extent of size homoplasy may impose a general caution against using hypervariable microsatellites in genetic diversity measures when alleles are identified by fragment length analysis only.


Molecular Biology and Evolution | 2013

Substantial Loss of Conserved and Gain of Novel MicroRNA Families in Flatworms

Bastian Fromm; Merete Molton Worren; Christoph Hahn; Eivind Hovig; Lutz Bachmann

Recent studies on microRNA (miRNA) evolution focused mainly on the comparison of miRNA complements between animal clades. However, evolution of miRNAs within such groups is poorly explored despite the availability of comparable data that in some cases lack only a few key taxa. For flatworms (Platyhelminthes), miRNA complements are available for some free-living flatworms and all major parasitic lineages, except for the Monogenea. We present the miRNA complement of the monogenean flatworm Gyrodactylus salaris that facilitates a comprehensive analysis of miRNA evolution in Platyhelminthes. Using the newly designed bioinformatics pipeline miRCandRef, the miRNA complement was disentangled from next-generation sequencing of small RNAs and genomic DNA without a priori genome assembly. It consists of 39 miRNA hairpin loci of conserved miRNA families, and 22 novel miRNAs. A comparison with the miRNA complements of Schmidtea mediterranea (Turbellaria), Schistosoma japonicum (Trematoda), and Echinococcus granulosus (Cestoda) reveals a substantial loss of conserved bilaterian, protostomian, and lophotrochozoan miRNAs. Eight of the 46 expected conserved miRNAs were lost in all flatworms, 16 in Neodermata and 24 conserved miRNAs could not be detected in the cestode and the trematode. Such a gradual loss of miRNAs has not been reported before for other animal phyla. Currently, little is known about miRNAs in Platyhelminthes, and for the majority of the lost miRNAs there is no prediction of function. As suggested earlier they might be related to morphological simplifications. The presence and absence of 153 conserved miRNAs was compared for platyhelminths and 32 other metazoan taxa. Phylogenetic analyses support the monophyly of Platyhelminthes (Turbellaria + Neodermata [Monogenea {Trematoda + Cestoda}]).


Molecular Ecology | 2009

Unexpected early extinction of the European pond turtle (Emys orbicularis) in Sweden and climatic impact on its Holocene range

Robert S. Sommer; Charlotte Lindqvist; Arne Persson; Henrik Bringsøe; Anders G. J. Rhodin; Norbert Schneeweiss; Pavel Široký; Lutz Bachmann; Uwe Fritz

Using ancient DNA sequences of subfossil European pond turtles (Emys orbicularis) from Britain, Central and North Europe and accelerator mass spectrometry radiocarbon dating for turtle remains from most Swedish sites, we provide evidence for a Holocene range expansion of the pond turtle from the southeastern Balkans into Britain, Central Europe and Scandinavia, according to the ‘grasshopper pattern’ of Hewitt. Northeastern Europe and adjacent Asia were colonized from another refuge located further east. With increasing annual mean temperatures, pond turtles reached southern Sweden approximately 9800 years ago. Until approximately 5500 years ago, rising temperatures facilitated a further range expansion up to Östergötland, Sweden (approximately 58°30′N). However, around 5500 years ago pond turtle records suddenly terminate in Sweden, some 1500 years before the Holocene thermal maximum ended in Scandinavia and distinctly earlier than previously thought. This extinction coincides with a temporary cooling oscillation during the Holocene thermal maximum and is likely related to lower summer temperatures deteriorating reproductive success. Although climatic conditions improved later again, recolonization of Sweden from southern source populations was prevented by the Holocene submergence of the previous land connection via the Danish Straits that occurred approximately 8500 years ago.


Journal of Molecular Evolution | 1995

The pvB370 BamHI satellite DNA family of the Drosophila virilis group and its evolutionary relation to mobile dispersed genetic pDv elements

Erja Heikkinen; Virpi Launonen; Elke Müller; Lutz Bachmann

The pvB370 BamHI tandemly repeated satellite DNA family was isolated and analyzed in eight species of the Drosophila virilis group and is probably common to all its members. Unexpectedly, the satellite DNA family showed similar levels of intra- and interspecific sequence variability. An EMBL gene-bank search revealed a high degree of similarity between the members of the pvB370 BamHI satellite DNA sequence family and the direct terminal repeats of the mobile dispersed genetic pDv elements described in D. virilis and other species of the group. However, no similarity was observed to the transcribed and translated part of the pDv elements. It is suggested that the satellite DNA repeats are phylogenetically older than the mobile dispersed genetic pDv element and that the functional pDv elements might have derived from the satellite DNA family through an insertion of a tandemly repeated 36-bp transcription unit.


Parasitology | 2007

Arctic charr (Salvelinus alpinus) is a suitable host for Gyrodactylus salaris (Monogenea, Gyrodactylidae) in Norway.

G. Robertsen; Haakon Hansen; Lutz Bachmann; Tor A. Bakke

Gyrodactylus specimens infecting both anadromous Arctic charr (Salvelinus alpinus) from River Signaldalselva (northern Norway) and resident Arctic charr from Lake Pålsbufjorden (southern Norway) were identified as G. salaris using molecular markers and morphometrics. The infection in Pålsbufjorden represents the first record of a viable G. salaris population infecting a host in the wild in the absence of salmon (Salmo salar). G. salaris on charr from Signaldalselva and Pålsbufjorden bear different mitochondrial haplotypes. While parasites infecting charr in Signaldalselva carry the same mitochondrial haplotype as parasites from sympatric Atlantic salmon, G. salaris from charr in Pålsbufjorden bear a haplotype that has previously been found in parasites infecting rainbow trout (Oncorhynchus mykiss) and Atlantic salmon, and an IGS repeat arrangement that is very similar to those observed earlier in parasites infecting rainbow trout. Accordingly, the infection may result from 2 subsequent host-switches (from salmon via rainbow trout to charr). Morphometric analyses revealed significant differences between G. salaris infecting charr in the 2 localities, and between those on sympatric charr and salmon within Signaldalselva. These differences may reflect adaptations to a new host species, different environmental conditions, and/or inherited differences between the G. salaris strains. The discovery of G. salaris on populations of both anadromous and resident charr may have severe implications for Atlantic salmon stock-management as charr may represent a reservoir for infection of salmon.


Molecular Ecology | 2007

Genetic variation in Holocene bowhead whales from Svalbard

T. Borge; Lutz Bachmann; G. Bjørnstad; Øystein Wiig

Bowhead whales (Balaena mysticetus) are distributed in the Arctic in five putative stocks. All stocks have been heavily depleted due to centuries of exploitation. In the present study, nucleotide sequence variation of the mitochondrial control region was determined from bone remains of 99 bowhead whales. The bones, 14C dated from recent to more than 50 000 bp, were collected on Svalbard (Spitsbergen) and are expected to relate to ancestors of the today nearly extinct Spitsbergen stock. Fifty‐eight haplotypes were found, a few being frequent but many only found in one individual. The most abundant haplotypes of the Spitsbergen stock are the same as those most abundant in the extant Bering‐Chukchi‐Beaufort (BCB) Seas stock of bowhead whales. Although FST indicates a slight but statistically significant genetic differentiation between the Spitsbergen and the BCB stocks this was not considered informative due to the very high levels of genetic diversity of mitochondrial DNA haplotypes in both bowhead whale stocks. Other measures such as KST also indicated very low genetic differentiation between the two populations. Nucleotide diversity and haplotype diversity showed only minor differences between the Spitsbergen and BCB stocks. The data suggest that the historic Spitsbergen stock — before the severe bottleneck caused by whaling — did not have substantially more genetic variation than the extant BCB stock. The similar haplotypes of the Holocene Svalbard samples and the current BCB stock indicate significant migration between these two stocks and question the current designation of five distinct stocks of bowhead whales in the Arctic.

Collaboration


Dive into the Lutz Bachmann's collaboration.

Top Co-Authors

Avatar

Øystein Wiig

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar

Tor A. Bakke

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar

Christian Lydersen

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jon Aars

Norwegian Polar Institute

View shared research outputs
Top Co-Authors

Avatar

Kit M. Kovacs

Norwegian Polar Institute

View shared research outputs
Top Co-Authors

Avatar

Bastian Fromm

Oslo University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge