Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luwen Zhang is active.

Publication


Featured researches published by Luwen Zhang.


Journal of Interferon and Cytokine Research | 2002

Structure and function of IRF-7.

Luwen Zhang; Joseph S. Pagano

Interferon (IFN) regulatory factors (IRF) are a family of transcription factors with multiple functions. IRF-7 was initially cloned within the biologic context of Epstein-Barr virus (EBV) latency and discovered to have an intimate relation with the EBV primary oncogenic protein, latent membrane protein-1 (LMP-1). EBV regulates and uses IRF-7 as a secondary mediator for several target genes involved in latency and immune regulation. Other than its functions in EBV latency, IRF-7 has been identified as one of the major players in virally induced IFN production that is central to innate immunity. Thus, IRF-7 plays important roles in a variety of biologic systems.


Journal of Virology | 2000

Interferon Regulatory Factor 7 Is Induced by Epstein-Barr Virus Latent Membrane Protein 1

Luwen Zhang; Joseph S. Pagano

ABSTRACT Infection by Epstein-Barr virus (EBV) generates several types of latency with different profiles of gene expression but with expression of Epstein-Barr nuclear antigen 1 (EBNA-1) in common. TheBamHI Q promoter (Qp) is used for the transcription of EBNA-1 mRNA in type I latency, which is an EBV infection state exemplified by Burkitts lymphoma (BL). However, Qp is inactive in type III latency, and other promoters (C/Wp) are used for transcription of EBNA-1, which raises the question of how usage of these promoters is governed. Interferon (IFN) regulatory factor 7 (IRF-7) was identified first as a negative regulator of Qp. Expression of IRF-7 is associated with EBV type III latency, where Qp is inactive, but not with type I latency, raising the possibility that a viral gene product(s) expressed in type III latency might induce IRF-7 and repress Qp. Here, detailed analysis of the expression of IRF-7 revealed that it is associated with the expression of EBV latent membrane protein 1 (LMP-1) and that LMP-1 stimulates the expression of IRF-7 in type III latency in which Qp is inactive. In contrast, LMP-1 is not expressed in type I latency cells in which Qp is active. LMP-1 represses the constitutive activity of Qp reporter constructs. Mutational analysis of Qp reporter constructs revealed that the Qp IFN-stimulated response element (ISRE) is essential for the repression by LMP-1. Furthermore, LMP-1 reduced EBNA-1 mRNA derived from Qp only in type I cells in which IRF-7 could be induced. Finally, IFN-α, but not IFN-γ, repressed endogenous Qp activity, which is consistent with the ability of IFN-α to induce IRF-7. Thus, IRF-7 may mediate repression of Qp by LMP-1. The induction of IRF-7 by LMP-1 may be relevant to the silencing of Qp in EBV type III latency.


Journal of Virology | 2001

Intracellular Signaling Molecules Activated by Epstein-Barr Virus for Induction of Interferon Regulatory Factor 7

Luwen Zhang; Lihong Wu; Ke Hong; Joseph S. Pagano

ABSTRACT Epstein-Barr virus (EBV) latent membrane protein 1 (LMP-1) is the principal oncogenic protein in the EBV transformation process. LMP-1 induces the expression of interferon regulatory factor 7 (IRF-7) and activates IRF-7 protein by phosphorylation and nuclear translocation. LMP-1 is an integral membrane protein with two regions in its C terminus that initiate signaling processes, the C-terminal activator regions 1 (CTAR-1) and CTAR-2. Here, genetic analysis of LMP-1 has determined that the PXQXT motif that governs the interaction between LMP-1 CTAR-1 and tumor necrosis factor receptor-associated factors (TRAFs) is needed to induce the expression of IRF-7. Mutations in the PXQXT motif in CTAR-1 that disrupt the interaction between LMP-1 and TRAFs abolished the induction of IRF-7. Also, dominant-negative mutants of TRAFs inhibited the induction of IRF-7 by CTAR-1. The last three amino acids (YYD) of CTAR-2 are also important for the induction of IRF-7. When both PXQXT and YYD were mutated (LMP-DM), the LMP-1 mutant failed to induce IRF-7. Also, LMP-DM blocked the induction of IRF-7 by wild-type LMP-1. These data strongly suggest that both CTAR-1 and CTAR-2 of LMP-1 independently induce the expression of IRF-7. In addition, NF-κB is involved in the induction of IRF-7. A superrepressor of IκB (sr-IκB) could block the induction of IRF-7 by LMP-1, and overexpression of NF-κB (p65 plus p50) could induce the expression of IRF-7. In addition, we have found that human IRF-7 is a stable protein, and sodium butyrate, a modifier of chromatin structure, induces IRF-7.


Journal of Virology | 2008

Interferon Regulatory Factor 4 Is Involved in Epstein-Barr Virus-Mediated Transformation of Human B Lymphocytes

Dongsheng Xu; Ling-Jun Zhao; Luis Del Valle; Judith Miklossy; Luwen Zhang

ABSTRACT Epstein-Barr virus (EBV) infection is associated with many human malignancies. In vitro, EBV transforms primary B lymphocytes into continuously growing lymphoblastoid cell lines. EBV latent membrane protein 1 (LMP-1) is required for EBV transformation processes. Interferon regulatory factor 4 (IRF-4) is a transcription factor and has oncogenic potential. We find that high levels of IRF-4 are associated with EBV transformation of human primary B cells in vitro and with EBV type III latency in which LMP-1 is expressed. We show that EBV LMP-1 stimulates IRF-4 expression in B lymphocytes. The stimulation of IRF-4 by LMP-1 requires signaling from LMP-1 and involves cellular NF-κB. The growth of EBV-transformed cells is inhibited when IRF-4 is specifically down-regulated. We further demonstrate that IRF-4 knockdown cells have lower proliferation but higher apoptotic rates than control cells. Finally, IRF-4 is expressed in significant numbers of specimens of primary central nervous system (CNS) lymphomas (12/27 [44.4%]), an EBV-associated malignancy. The association between the expression levels of LMP-1 and IRF-4 is statistically significant (P = 0.011) in these CNS lymphomas. Our data suggest that IRF-4 may be a critical factor in EBV transformation and a useful target in the therapy of EBV-mediated neoplasia.


Molecular and Cellular Biology | 1999

Interferon Regulatory Factor 2 Represses the Epstein-Barr Virus BamHI Q Latency Promoter in Type III Latency

Luwen Zhang; Joseph S. Pagano

ABSTRACT Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA-1) is the essential protein for maintenance of the EBV episome and establishment of latency. The BamHI Q promoter (Qp) is used for the transcription of EBNA-1 mRNA in type I and type II latency, which are EBV infection states exemplified by Burkitt’s lymphoma and nasopharyngeal carcinoma. However, Qp is inactive in type III latency, and other promoters (the BamHI C promoter and/or theBamHI W promoter) are used for EBNA-1. The involvement of interferon regulatory factors (IRFs) in the regulation of Qp is suggested by the presence of an essential interferon-stimulated response element (ISRE) in the promoter. In this work, expression of IRF-2 is shown to be inversely associated with Qp status, i.e., IRF-2 levels are high in type III latency (when Qp is inactive) and low in type I latency (when Qp is active). Also, IRF-2 is identified by electrophoretic mobility shift assay as the major protein binding to the Qp ISRE in type III latency. In transient transfection assays, IRF-2 represses the activity of Qp-reporter constructs. Overexpression of IRF-2 in a type I latency cell line did not activate the endogenous Qp but marginally reduced the EBNA-1 mRNA level. Switching from type III latency (Qp inactive) to type II latency (Qp active), as produced by cell fusion, is directly associated with greatly reduced expression of IRF-2. These data strongly suggest that IRF-2 is a negative regulator of Qp and may contribute to the silencing of Qp in type III latency.


Journal of Virology | 2001

Interferon Regulatory Factor 7 Mediates Activation of Tap-2 by Epstein-Barr Virus Latent Membrane Protein 1

Luwen Zhang; Joseph S. Pagano

ABSTRACT Transporter associated with antigen processing 2 (Tap-2) is responsible for ATP-dependent transport of peptides from the cytosol to the endoplasmic reticulum, where peptides bind to newly synthesized human leukocyte antigen (HLA) class I molecules, which are essential for cellular immune responses. Epstein-Barr virus (EBV) latent membrane protein 1 (LMP-1) has been shown to induce the expression of Tap-2. In this study, the induction of endogenous Tap-2 by LMP-1 is shown to be associated with and requires the expression of interferon regulatory factor 7 (IRF-7). In DG75 Burkitts lymphoma (BL) cells, in which LMP-1 induces the expression of IRF-7, LMP-1 induced endogenous Tap-2, and ectopic expression of IRF-7 could enhance the induction. In Akata BL cells, in which LMP-1 could not induce IRF-7, LMP-1 could not induce Tap-2. Addition of IRF-7, which complements the defect in Akata cells, could stimulate the expression of Tap-2. Furthermore, LMP-1 and IRF-7A but not other IRF-7 splicing variants could activate endogenous Tap-2. A Tap-2 promoter reporter construct could be activated by the overexpression of IRF-7A. The activation could be specifically enhanced by LMP-1 and was dependent on an intact interferon-stimulated response element (ISRE) present in the Tap-2 promoter. Also, IRF-7 can bind to the Tap-2 promoter under physiological conditions in vivo, as shown by formaldehyde cross-linking, as well as to the Tap-2 ISRE in vitro, as shown by gel mobility shift assays. Furthermore, LMP-1 facilitates the phosphorylation and nuclear translocation of IRF-7. These data point to the role of IRF-7 as a secondary mediator of LMP-1-activated signal transduction for Tap-2 as follows: LMP-1 stimulates the expression of IRF-7 and facilitates its phosphorylation and nuclear translocation, and then the activated IRF-7 mediates the activation of the cellular Tap-2 gene. The induction of Tap-2 by IRF-7 and LMP-1 may have an important implication for the immune response to EBV and its persistence in vivo.


Journal of Biological Chemistry | 2011

Kaposi Sarcoma-associated Herpesvirus Degrades Cellular Toll-Interleukin-1 Receptor Domain-containing Adaptor-inducing β-Interferon (TRIF)

Humera Ahmad; Rachel Gubbels; Erica Ehlers; Florencia Meyer; Thomas Waterbury; Rongtuan Lin; Luwen Zhang

Kaposi sarcoma-associated herpesvirus (KSHV) is a human γ-herpesvirus associated with several human malignancies. The replication and transcription activator (RTA) is necessary and sufficient for the switch from KSHV latency to lytic replication. Toll-interleukin-1 receptor (TIR) domain-containing adaptor-inducing β-interferon (TRIF, also called TIR-domain-containing adaptor molecule-1 (TICAM-1)) is a signaling adaptor molecule that is critically involved in the Toll-like receptor 3 (TLR-3) and TLR-4 signaling pathways for type I interferon (IFN) production, a key component of innate immunity against microbial infection. In this report, we find a new mechanism by which RTA blocks innate immunity by targeting cellular TRIF. RTA specifically degrades TRIF by shortening the half-life of TRIF protein. This RTA-mediated degradation is at least partially mediated through the ubiquitin-proteasome pathway because proteasome inhibitors as well as knockdown of cellular ubiquitin expression alleviate the degradation. RTA may not directly interact with TRIF and may activate TRIF degradation indirectly through an unknown mediator(s). RTA targets multiple regions of TRIF and may use its ubiquitin ligase domain for the degradation. In addition, physiological levels of TRIF protein are down-regulated during KSHV lytic replication when RTA is expressed. Finally, RTA down-regulates double-stranded RNA-initiated activation of TLR-3 pathway, in the absence of degradation of IFN regulatory factor 7 (IRF-7). Taken together, these data suggest that KSHV employs a novel mechanism to block the innate immunity by degrading TRIF protein. This work may contribute to our understandings on how KSHV evades host immunity for its survival in vivo.


Journal of Virology | 2004

Interferon Regulatory Factor 7 Is Associated with Epstein-Barr Virus-Transformed Central Nervous System Lymphoma and Has Oncogenic Properties

Luwen Zhang; Jun Zhang; Que T. Lambert; Channing J. Der; Luis Del Valle; Judith Miklossy; Kamel Khalili; You Zhou; Joseph S. Pagano

ABSTRACT Interferon regulatory factor 7 (IRF-7) is implicated in the regulation of Epstein-Barr virus (EBV) latency. EBV transforms primary B cells, and the major EBV oncoprotein, latent membrane protein 1 (LMP-1), is required for the process. LMP-1 both induces the expression of IRF-7 and activates the IRF-7 protein by phosphorylation and nuclear translocation. Here we report that the expression of IRF-7 is increased in EBV-immortalized B lymphocytes compared with that in primary B cells. IRF-7 was phosphorylated and predominantly localized in the nucleus in the immortalized cells. The expression of IRF-7 was detected in 19 of 27 specimens of primary lymphomas of the human central nervous system by immunohistochemical analysis. The association between LMP-1 and IRF-7 was statistically highly significant for these specimens. An appreciable amount of the IRF-7 expressed in lymphoma cells was localized in the nucleus. Furthermore, IRF-7 promoted the anchorage-independent growth of NIH 3T3 cells. LMP-1 and IRF-7 showed additive effects on the growth transformation of NIH 3T3 cells. IRF-7-expressing NIH 3T3 cells formed tumors in athymic mice. Thus, IRF-7 has oncogenic properties and, along with LMP-1, may mediate or potentiate the EBV transformation process in the pathogenesis of EBV-associated lymphomas.


Advances in pharmacology (San Diego) | 2008

The viral etiology of AIDS-associated malignancies.

Peter C. Angeletti; Luwen Zhang; Charles Wood

Publisher Summary Acquired immune deficiency syndrome (AIDS) malignancies have been a major complication of the human immunodeficiency virus (HIV) disease course, and this is likely to continue in HIV‐infected individuals. In the era of highly active antiretroviral therapy (HAART), the survival rate of the HIV‐infected individuals has increased dramatically mainly because of the suppression of HIV viral load and the restoration of the immune response. However, even though HAART appears to be effective, still only leads to partial immune reconstitution. Prolonged immunosuppression likely leads to a resurgence of AIDS associated cancers. This coupled with the fact that there are still over 40 million individuals living with HIV, many of them are located in regions of the world where HAART is still not widely available, such as the African continent. It is expected that AIDS‐associated cancers will continue to pose a major challenge globally for many years to come. Many of the cancers associated with immunosuppressed individuals are those that were found to have viral etiology.


Journal of Virology | 2005

Modulation of Human Herpesvirus 8/Kaposi's Sarcoma-Associated Herpesvirus Replication and Transcription Activator Transactivation by Interferon Regulatory Factor 7

Jinzhong Wang; Jun Zhang; Luwen Zhang; William J. Harrington; John T. West; Charles Wood

ABSTRACT Human herpesvirus 8 (HHV-8)/Kaposis sarcoma-associated herpesvirus infection goes through lytic and latent phases that are regulated by viral gene products, but very little is known about the involvement of host proteins. The replication and transcription activator (RTA) is a viral protein sufficient to initiate lytic replication by activating downstream genes, including the viral early gene open reading frame 57 (ORF 57), which codes for a posttranscriptional activator. In this study, we demonstrate that cellular interferon regulatory factor 7 (IRF-7) negatively regulates this process by competing with RTA for binding to the RTA response element in the ORF 57 promoter to down-regulate RTA-induced gene expression. We also show that alpha interferon represses RTA-mediated transactivation and that repression involves IRF-7. Our study indicates that upon HHV-8 infection, the host responds by suppression of lytic gene expression through binding of IRF-7 to the lytic viral gene promoter. These findings suggest that HHV-8 has developed a novel mechanism to induce but then subvert the innate antiviral response, specifically the interferon-signaling pathway, to regulate RTA activity and ultimately the viral latent/lytic replicative cycle.

Collaboration


Dive into the Luwen Zhang's collaboration.

Top Co-Authors

Avatar

Dongsheng Xu

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Joseph S. Pagano

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Jun Zhang

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Erica Ehlers

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Amy Lingel

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Charles Wood

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Mingxia Cao

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Florencia Meyer

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge