Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luz M. Del Razo is active.

Publication


Featured researches published by Luz M. Del Razo.


Archives of Toxicology | 2000

Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells

Miroslav Styblo; Luz M. Del Razo; Libia Vega; Dori R. Germolec; Edward L. LeCluyse; Geraldine A. Hamilton; William Reed; Changqing Wang; William R. Cullen; David J. Thomas

Abstract. Biomethylation is considered a major detoxification pathway for inorganic arsenicals (iAs). According to the postulated metabolic scheme, the methylation of iAs yields methylated metabolites in which arsenic is present in both pentavalent and trivalent forms. Pentavalent mono- and dimethylated arsenicals are less acutely toxic than iAs. However, little is known about the toxicity of trivalent methylated species. In the work reported here the toxicities of iAs and trivalent and pentavalent methylated arsenicals were examined in cultured human cells derived from tissues that are considered a major site for iAs methylation (liver) or targets for carcinogenic effects associated with exposure to iAs (skin, urinary bladder, and lung). To characterize the role of methylation in the protection against toxicity of arsenicals, the capacities of cells to produce methylated metabolites were also examined. In addition to human cells, primary rat hepatocytes were used as methylating controls. Among the arsenicals examined, trivalent monomethylated species were the most cytotoxic in all cell types. Trivalent dimethylated arsenicals were at least as cytotoxic as trivalent iAs (arsenite) for most cell types. Pentavalent arsenicals were significantly less cytotoxic than their trivalent analogs. Among the cell types examined, primary rat hepatocytes exhibited the greatest methylation capacity for iAs followed by primary human hepatocytes, epidermal keratinocytes, and bronchial epithelial cells. Cells derived from human bladder did not methylate iAs. There was no apparent correlation between susceptibility of cells to arsenic toxicity and their capacity to methylate iAs. These results suggest that (1) trivalent methylated arsenicals, intermediary products of arsenic methylation, may significantly contribute to the adverse effects associated with exposure to iAs, and (2) high methylation capacity does not protect cells from the acute toxicity of trivalent arsenicals.


Environmental Health Perspectives | 2004

Urinary Trivalent Methylated Arsenic Species in a Population Chronically Exposed to Inorganic Arsenic

Olga L. Valenzuela; Víctor Hugo Borja-Aburto; Gonzalo García-Vargas; Martha B Cruz-Gonzalez; Eliud A. García-Montalvo; Emma S. Calderón-Aranda; Luz M. Del Razo

Chronic exposure to inorganic arsenic (iAs) has been associated with increased risk of various forms of cancer and of noncancerous diseases. Metabolic conversions of iAs that yield highly toxic and genotoxic methylarsonite (MAsIII) and dimethylarsinite (DMAsIII) may play a significant role in determining the extent and character of toxic and cancer-promoting effects of iAs exposure. In this study we examined the relationship between urinary profiles of MAsIII and DMAsIII and skin lesion markers of iAs toxicity in individuals exposed to iAs in drinking water. The study subjects were recruited among the residents of an endemic region of central Mexico. Drinking-water reservoirs in this region are heavily contaminated with iAs. Previous studies carried out in the local populations have found an increased incidence of pathologies, primarily skin lesions, that are characteristic of arseniasis. The goal of this study was to investigate the urinary profiles for the trivalent and pentavalent As metabolites in both high- and low-iAs–exposed subjects. Notably, methylated trivalent arsenicals were detected in 98% of analyzed urine samples. On average, the major metabolite, DMAsIII, represented 49% of total urinary As, followed by DMAsV (23.7%), iAsV (8.6%), iAsIII (8.5%), MAsIII (7.4%), and MAsV (2.8%). More important, the average MAsIII concentration was significantly higher in the urine of exposed individuals with skin lesions compared with those who drank iAs-contaminated water but had no skin lesions. These data suggest that urinary levels of MAsIII, the most toxic species among identified metabolites of iAs, may serve as an indicator to identify individuals with increased susceptibility to toxic and cancer-promoting effects of arseniasis.


Antioxidants & Redox Signaling | 2014

Oxidative stress, redox signaling, and autophagy: cell death versus survival.

Juliana Navarro-Yepes; Michaela Burns; Annadurai Anandhan; Oleh Khalimonchuk; Luz M. Del Razo; Betzabet Quintanilla-Vega; Aglaia Pappa; Mihalis I. Panayiotidis; Rodrigo Franco

SIGNIFICANCE The molecular machinery regulating autophagy has started becoming elucidated, and a number of studies have undertaken the task to determine the role of autophagy in cell fate determination within the context of human disease progression. Oxidative stress and redox signaling are also largely involved in the etiology of human diseases, where both survival and cell death signaling cascades have been reported to be modulated by reactive oxygen species (ROS) and reactive nitrogen species (RNS). RECENT ADVANCES To date, there is a good understanding of the signaling events regulating autophagy, as well as the signaling processes by which alterations in redox homeostasis are transduced to the activation/regulation of signaling cascades. However, very little is known about the molecular events linking them to the regulation of autophagy. This lack of information has hampered the understanding of the role of oxidative stress and autophagy in human disease progression. CRITICAL ISSUES In this review, we will focus on (i) the molecular mechanism by which ROS/RNS generation, redox signaling, and/or oxidative stress/damage alter autophagic flux rates; (ii) the role of autophagy as a cell death process or survival mechanism in response to oxidative stress; and (iii) alternative mechanisms by which autophagy-related signaling regulate mitochondrial function and antioxidant response. FUTURE DIRECTIONS Our research efforts should now focus on understanding the molecular basis of events by which autophagy is fine tuned by oxidation/reduction events. This knowledge will enable us to understand the mechanisms by which oxidative stress and autophagy regulate human diseases such as cancer and neurodegenerative disorders.


Environmental Health | 2011

Exposure to arsenic in drinking water is associated with increased prevalence of diabetes: a cross-sectional study in the Zimapán and Lagunera regions in Mexico

Luz M. Del Razo; Gonzalo García-Vargas; Olga L. Valenzuela; Erika Hernández Castellanos; Luz C. Sánchez-Peña; Jenna M. Currier; Zuzana Drobná; Dana Loomis; Miroslav Stýblo

BackgroundHuman exposures to inorganic arsenic (iAs) have been linked to an increased risk of diabetes mellitus. Recent laboratory studies showed that methylated trivalent metabolites of iAs may play key roles in the diabetogenic effects of iAs. Our study examined associations between chronic exposure to iAs in drinking water, metabolism of iAs, and prevalence of diabetes in arsenicosis-endemic areas of Mexico.MethodsWe used fasting blood glucose (FBG), fasting plasma insulin (FPI), oral glucose tolerance test (OGTT), glycated hemoglobin (HbA1c), and insulin resistance (HOMA-IR) to characterize diabetic individuals. Arsenic levels in drinking water and urine were determined to estimate exposure to iAs. Urinary concentrations of iAs and its trivalent and pentavalent methylated metabolites were measured to assess iAs metabolism. Associations between diabetes and iAs exposure or urinary metabolites of iAs were estimated by logistic regression with adjustment for age, sex, hypertension and obesity.ResultsThe prevalence of diabetes was positively associated with iAs in drinking water (OR 1.13 per 10 ppb, p < 0.01) and with the concentration of dimethylarsinite (DMAsIII) in urine (OR 1.24 per inter-quartile range, p = 0.05). Notably, FPI and HOMA-IR were negatively associated with iAs exposure (β -2.08 and -1.64, respectively, p < 0.01), suggesting that the mechanisms of iAs-induced diabetes differ from those underlying type-2 diabetes, which is typically characterized by insulin resistance.ConclusionsOur study confirms a previously reported, but frequently questioned, association between exposure to iAs and diabetes, and is the first to link the risk of diabetes to the production of one of the most toxic metabolites of iAs, DMAsIII.


Toxicology and Applied Pharmacology | 2003

Accumulation and metabolism of arsenic in mice after repeated oral administration of arsenate.

Michael F. Hughes; Elaina M. Kenyon; Brenda C. Edwards; Carol T. Mitchell; Luz M. Del Razo; David J. Thomas

Exposure to the human carcinogen inorganic arsenic (iAs) occurs daily. However, the disposition of arsenic after repeated exposure is not well known. This study examined the disposition of arsenic after repeated po administration of arsenate. Whole-body radioassay of adult female B6C3F1 mice was used to estimate the terminal elimination half-life of arsenic after a single po dose of [(73)As]arsenate (0.5 mg As/kg). From these data, it was estimated that steady-state levels of whole-body arsenic could be attained after nine repeated daily doses of [(73)As]arsenate (0.5 mg As/kg). The mice were whole-body radioassayed immediately before and after the repeated dosing. Excreta were collected daily and analyzed for arsenic-derived radioactivity and arsenicals. Whole-body radioactivity was determined 24 h after the last repeated dose, and five mice were then euthanized and tissues analyzed for radioactivity. The remaining mice were whole-body radioassayed for 8 more days, and then their tissues were analyzed for radioactivity. Other mice were administered either a single or nine repeated po doses of non-radioactive arsenate (0.5 mg As/kg). Twenty-four hours after the last dose, the mice were euthanized, and tissues were analyzed for arsenic by atomic absorption spectrometry (AAS). Whole-body radioactivity was rapidly eliminated from mice after repeated [(73)As]arsenate exposure, primarily by urinary excretion in the form of dimethylarsinic acid (DMA(V)). Accumulation of radioactivity was highest in bladder, kidney, and skin. Loss of radioactivity was most rapid in the lung and slowest in the skin. There was an organ-specific distribution of arsenic as determined by AAS. Monomethylarsonic acid was detected in all tissues except the bladder. Bladder and lung had the highest percentage of DMA(V) after a single exposure to arsenate, and it increased with repeated exposure. In kidney, iAs was predominant. There was a higher percentage of DMA(V) in the liver than the other arsenicals after a single exposure to arsenate. The percentage of hepatic DMA(V) decreased and that of iAs increased with repeated exposure. A trimethylated metabolite was also detected in the liver. Tissue accumulation of arsenic after repeated po exposure to arsenate in the mouse corresponds to the known human target organs for iAs-induced carcinogenicity.


Chemical Research in Toxicology | 2011

Epigenetic Changes in Individuals with Arsenicosis

Lisa Smeester; Julia E. Rager; Kathryn A. Bailey; Xiaojun Guan; Nikia Smith; Gonzalo García-Vargas; Luz M. Del Razo; Zuzana Drobná; Hemant Kelkar; Miroslav Stýblo; Rebecca C. Fry

Inorganic arsenic (iAs) is an environmental toxicant currently poisoning millions of people worldwide, and chronically exposed individuals are susceptible to arsenicosis or arsenic poisoning. Using a state-of-the-art technique to map the methylomes of our study subjects, we identified a large interactome of hypermethylated genes that are enriched for their involvement in arsenic-associated diseases, such as cancer, heart disease, and diabetes. Notably, we have uncovered an arsenic-induced tumor suppressorome, a complex of 17 tumor suppressors known to be silenced in human cancers. This finding represents a pivotal clue in unraveling a possible epigenetic mode of arsenic-induced disease.


Toxicology and Applied Pharmacology | 2009

Association of AS3MT polymorphisms and the risk of premalignant arsenic skin lesions.

Olga L. Valenzuela; Zuzana Drobná; Erika Hernández-Castellanos; Luz C. Sánchez-Peña; Gonzalo García-Vargas; Víctor Hugo Borja-Aburto; Miroslav Stýblo; Luz M. Del Razo

Exposure to naturally occurring inorganic arsenic (iAs), primarily from contaminated drinking water, is considered one of the top environmental health threats worldwide. Arsenic (+3 oxidation state) methyltransferase (AS3MT) is the key enzyme in the biotransformation pathway of iAs. AS3MT catalyzes the transfer of a methyl group from S-adenosyl-L-methionine to trivalent arsenicals, resulting in the production of methylated (MAs) and dimethylated arsenicals (DMAs). MAs is a susceptibility factor for iAs-induced toxicity. In this study, we evaluated the association of the polymorphism in AS3MT gene with iAs metabolism and with the presence of arsenic (As) premalignant skin lesions. This is a case-control study of 71 cases with skin lesions and 51 controls without skin lesions recruited from a iAs endemic area in Mexico. We measured urinary As metabolites, differentiating the trivalent and pentavalent arsenical species, using the hydride generation atomic absorption spectrometry. In addition, the study subjects were genotyped to analyze three single nucleotide polymorphisms (SNPs), A-477G, T14458C (nonsynonymus SNP; Met287Thr), and T35587C, in the AS3MT gene. We compared the frequencies of the AS3MT alleles, genotypes, and haplotypes in individuals with and without skin lesions. Marginal differences in the frequencies of the Met287Thr genotype were identified between individuals with and without premalignant skin lesions (p=0.055): individuals carrying the C (TC+CC) allele (Thr) were at risk [odds ratio=4.28; 95% confidence interval (1.0-18.5)]. Also, individuals with C allele of Met287Thr displayed greater percentage of MAs in urine and decrease in the percentage of DMAs. These findings indicate that Met287Thr influences the susceptibility to premalignant As skin lesions and might be at increased risk for other adverse health effects of iAs exposure.


Toxicology and Applied Pharmacology | 2008

Decreased in vitro fertility in male rats exposed to fluoride-induced oxidative stress damage and mitochondrial transmembrane potential loss.

Jeannett A. Izquierdo-Vega; Manuel Sánchez-Gutiérrez; Luz M. Del Razo

Fluorosis, caused by drinking water contamination with inorganic fluoride, is a public health problem in many areas around the world. The aim of the study was to evaluate the effect of environmentally relevant doses of fluoride on in vitro fertilization (IVF) capacity of spermatozoa, and its relationship to spermatozoa mitochondrial transmembrane potential (DeltaPsi(m)). Male Wistar rats were administered at 5 mg fluoride/kg body mass/24 h, or deionized water orally for 8 weeks. We evaluated several spermatozoa parameters in treated and untreated rats: i) standard quality analysis, ii) superoxide dismutase (SOD) activity, iii) the generation of superoxide anion (O(2)(-)), iv) lipid peroxidation concentration, v) ultrastructural analyses of spermatozoa using transmission electron microscopy, vi) DeltaPsi(m), vii) acrosome reaction, and viii) IVF capability. Spermatozoa from fluoride-treated rats exhibited a significant decrease in SOD activity (~33%), accompanied with a significant increase in the generation of O(2)() (~40%), a significant decrease in DeltaPsi(m) (~33%), and a significant increase in lipid peroxidation concentration (~50%), relative to spermatozoa from the control group. Consistent with this finding, spermatozoa from fluoride-treated rats exhibited altered plasmatic membrane. In addition, the percentage of fluoride-treated spermatozoa capable of undergoing the acrosome reaction was decreased relative to control spermatozoa (34 vs. 55%), while the percentage fluoride-treated spermatozoa capable of oocyte fertilization was also significantly lower than the control group (13 vs. 71%). These observations suggest that subchronic exposure to fluoride causes oxidative stress damage and loss of mitochondrial transmembrane potential, resulting in reduced fertility.


Journal of Biochemical and Molecular Toxicology | 2013

Arsenic and the Epigenome: Interindividual Differences in Arsenic Metabolism Related to Distinct Patterns of DNA Methylation

Kathryn A. Bailey; Michael C. Wu; William O. Ward; Lisa Smeester; Julia E. Rager; Gonzalo García-Vargas; Luz M. Del Razo; Zuzana Drobná; Miroslav Stýblo; Rebecca C. Fry

Biotransformation of inorganic arsenic (iAs) is one of the factors that determines the character and magnitude of the diverse detrimental health effects associated with chronic iAs exposure, but it is unknown how iAs biotransformation may impact the epigenome. Here, we integrated analyses of genome‐wide, gene‐specific promoter DNA methylation levels of peripheral blood leukocytes with urinary arsenical concentrations of subjects from a region of Mexico with high levels of iAs in drinking water. These analyses revealed dramatic differences in DNA methylation profiles associated with concentrations of specific urinary metabolites of arsenic (As). The majority of individuals in this study had positive indicators of As‐related disease, namely pre‐diabetes mellitus or diabetes mellitus (DM). Methylation patterns of genes with known associations with DM were associated with urinary concentrations of specific iAs metabolites. Future studies will determine whether these DNA methylation profiles provide mechanistic insight into the development of iAs‐associated disease, predict disease risk, and/or serve as biomarkers of iAs exposure in humans.


Human & Experimental Toxicology | 1994

Altered Urinary Porphyrin Excretion in a Human Po p ulation Chronically Exposed to Arsenic in Mexico

Gonzalo G. García-Vargas; Luz M. Del Razo; Mariano E. Cebrián; Arnulfo Albores; Patricia Ostrosky-Wegman; Regina Montero; María E. Gonsebatt; Chang K. Lim; Francesco De Matteis

1 A detailed study of the urinary excretion pattern of porphyrins in humans chronically exposed to As via drinking water was performed using high performance liquid chromatography (HPLC) 2 Thirty-six individuals (15 men and 21 women) were selected from a town which had 0.400 mg L -1 of As in drinking water. The control group consisted of thirty-one individuals (13 men and 18 women) whose As concentration in drinking water was 0.020 mg L-1. 3 The major abnormalities in the urinary porphyrin excretion pattern observed in arsenic-exposed individuals were: (a) significant reductions in coproporphyrin III excretion resulting in decreases in the COPRO III/COPRO I ratio, and (b) significant increases in uroporphyrin excretion. Both alterations were responsible for the decrease in the COPRO/URO ratio. 4 No porphyrinogenic response was found in individuals with urinary As concentrations below 1,000 μg of As g-1 of creatinine, However, as arsenic concentrations exceeded this value, the excretion of porphyrins (except coproporphyrin III) increased proportionally. 5 The prevalence of clinical signs of arsenicism showed a direct relationship to both As concentration in urine and time-weighted exposure to As. A direct relationship between time-weighted exposure and alterations in urinary porphyrin excretion ratios was also observed. 6 The alterations found are compatible with a lower uroporphyrinogen decarboxylase activity in arsenic-exposed individuals. However, the similarities in the urinary porphyrin excretion pattern between As-exposed individuals and Dubin-Johnson syndrome patients suggest that impairments in the excretion of coproporphyrin isomers may also contribute to the pattern observed.

Collaboration


Dive into the Luz M. Del Razo's collaboration.

Top Co-Authors

Avatar

Gonzalo García-Vargas

Universidad Juárez del Estado de Durango

View shared research outputs
Top Co-Authors

Avatar

Zuzana Drobná

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Mariano E. Cebrián

Instituto Politécnico Nacional

View shared research outputs
Top Co-Authors

Avatar

Miroslav Stýblo

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Carmen González-Horta

Autonomous University of Chihuahua

View shared research outputs
Top Co-Authors

Avatar

David J. Thomas

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Blanca Sánchez-Ramírez

Autonomous University of Chihuahua

View shared research outputs
Top Co-Authors

Avatar

Dana Loomis

International Agency for Research on Cancer

View shared research outputs
Top Co-Authors

Avatar

Lourdes Ballinas-Casarrubias

Autonomous University of Chihuahua

View shared research outputs
Researchain Logo
Decentralizing Knowledge