Lya G. Soeteman-Hernández
Centre for Health Protection
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lya G. Soeteman-Hernández.
Environmental and Molecular Mutagenesis | 2014
George E. Johnson; Lya G. Soeteman-Hernández; B. Bhaskar Gollapudi; Owen Bodger; Kerry L. Dearfield; Robert H. Heflich; J.G. Hixon; David P. Lovell; James T. MacGregor; Lynn H. Pottenger; C.M. Thompson; L. Abraham; Véronique Thybaud; Jennifer Y. Tanir; Errol Zeiger; J. van Benthem; Paul A. White
Genetic toxicology data have traditionally been employed for qualitative, rather than quantitative evaluations of hazard. As a continuation of our earlier report that analyzed ethyl methanesulfonate (EMS) and methyl methanesulfonate (MMS) dose–response data (Gollapudi et al., 2013), here we present analyses of 1‐ethyl‐1‐nitrosourea (ENU) and 1‐methyl‐1‐nitrosourea (MNU) dose–response data and additional approaches for the determination of genetic toxicity point‐of‐departure (PoD) metrics. We previously described methods to determine the no‐observed‐genotoxic‐effect‐level (NOGEL), the breakpoint‐dose (BPD; previously named Td), and the benchmark dose (BMD10) for genetic toxicity endpoints. In this study we employed those methods, along with a new approach, to determine the non‐linear slope‐transition‐dose (STD), and alternative methods to determine the BPD and BMD, for the analyses of nine ENU and 22 MNU datasets across a range of in vitro and in vivo endpoints. The NOGEL, BMDL10 and BMDL1SD PoD metrics could be readily calculated for most gene mutation and chromosomal damage studies; however, BPDs and STDs could not always be derived due to data limitations and constraints of the underlying statistical methods. The BMDL10 values were often lower than the other PoDs, and the distribution of BMDL10 values produced the lowest median PoD. Our observations indicate that, among the methods investigated in this study, the BMD approach is the preferred PoD for quantitatively describing genetic toxicology data. Once genetic toxicology PoDs are calculated via this approach, they can be used to derive reference doses and margin of exposure values that may be useful for evaluating human risk and regulatory decision making. Environ. Mol. Mutagen. 55:609–623, 2014.
Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2015
James T. MacGregor; Roland Frötschl; Paul A. White; Kenny S. Crump; David A. Eastmond; Shoji Fukushima; Melanie Guérard; Makoto Hayashi; Lya G. Soeteman-Hernández; George E. Johnson; Toshio Kasamatsu; Dan D. Levy; Takeshi Morita; Lutz Müller; Rita Schoeny; Maik Schuler; Véronique Thybaud
This is the second of two reports from the International Workshops on Genotoxicity Testing (IWGT) Working Group on Quantitative Approaches to Genetic Toxicology Risk Assessment (the QWG). The first report summarized the discussions and recommendations of the QWG related to the need for quantitative dose-response analysis of genetic toxicology data, the existence and appropriate evaluation of threshold responses, and methods to analyze exposure-response relationships and derive points of departure (PoDs) from which acceptable exposure levels could be determined. This report summarizes the QWG discussions and recommendations regarding appropriate approaches to evaluate exposure-related risks of genotoxic damage, including extrapolation below identified PoDs and across test systems and species. Recommendations include the selection of appropriate genetic endpoints and target tissues, uncertainty factors and extrapolation methods to be considered, the importance and use of information on mode of action, toxicokinetics, metabolism, and exposure biomarkers when using quantitative exposure-response data to determine acceptable exposure levels in human populations or to assess the risk associated with known or anticipated exposures. The empirical relationship between genetic damage (mutation and chromosomal aberration) and cancer in animal models was also examined. It was concluded that there is a general correlation between cancer induction and mutagenic and/or clastogenic damage for agents thought to act via a genotoxic mechanism, but that the correlation is limited due to an inadequate number of cases in which mutation and cancer can be compared at a sufficient number of doses in the same target tissues of the same species and strain exposed under directly comparable routes and experimental protocols.
Mutagenesis | 2016
Lya G. Soeteman-Hernández; George E. Johnson; Wout Slob
In this study, we investigated the applicability of using in vivo mouse micronucleus (MN) data to derive cancer potency information. We also present a new statistical methodology for correlating estimated potencies between in vivo MN tests and cancer studies, which could similarly be used for other systems (e.g. in vitro vs. in vivo genotoxicity tests). The dose-response modelling program PROAST was used to calculate benchmark doses (BMDs) for estimating the genotoxic and carcinogenic potency for 48 compounds in mice; most of the data were retrieved from the National Toxicology Program (NTP) database, while some additional data were retrieved from the Carcinogenic Potency Database and published studies. BMD05s (doses with 5% increase in MN frequency) were derived from MN data, and BMD10s (doses with 10% extra cancer risk) were derived from carcinogenicity data, along with their respective lower (BMDL) and upper (BMDU) confidence bounds. A clear correlation between the in vivo MN BMD05s and the cancer BMD10s was observed when the lowest BMD05 from the in vivo MN was plotted against the lowest BMD10 from the carcinogenicity data for each individual compound. By making a further selection of BMDs related to more or less equally severe cancer lesions, the correlation was considerably improved. Getting a general scientific consensus on how we can quantitatively compare different tumour lesion types and investigating the impact of MN study duration are needed to refine this correlation analysis. Nevertheless, our results suggest that a BMD derived from genotoxicity data might provide a prediction of the tumour potency (BMD10) with an uncertainty range spanning roughly a factor of 100.
Environmental and Molecular Mutagenesis | 2014
Xuefei Cao; Roberta A. Mittelstaedt; Mason G. Pearce; Bruce C. Allen; Lya G. Soeteman-Hernández; George E. Johnson; C. Anita H. Bigger; Robert H. Heflich
The assumption that mutagens have linear dose–responses recently has been challenged. In particular, ethyl methanesulfonate (EMS), a DNA‐reactive mutagen and carcinogen, exhibited sublinear or thresholded dose‐responses for LacZ mutation in transgenic Muta™Mouse and for micronucleus (MN) frequency in CD1 mice (Gocke E and Müller L [2009]: Mutat Res 678:101–107). In order to explore variables in establishing genotoxicity dose–responses, we characterized the genotoxicity of EMS using gene mutation assays anticipated to have lower spontaneous mutant frequencies (MFs) than Muta™Mouse. Male gpt‐delta transgenic mice were treated daily for 28 days with 5 to 100 mg/kg EMS, and measurements were made on: (i) gpt MFs in liver, lung, bone marrow, kidney, small intestine, and spleen; and (ii) Pig‐a MFs in peripheral blood reticulocytes (RETs) and total red blood cells. MN induction also was measured in peripheral blood RETs. These data were used to calculate Points of Departure (PoDs) for the dose responses, i.e., no‐observed‐genotoxic‐effect‐levels (NOGELs), lower confidence limits of threshold effect levels (Td‐LCIs), and lower confidence limits of 10% benchmark response rates (BMDL10s). Similar PoDs were calculated from the published EMS dose–responses for LacZ mutation and CD1 MN induction. Vehicle control gpt and Pig‐a MFs were 13–40‐fold lower than published vehicle control LacZ MFs. In general, the EMS genotoxicity dose–responses in gpt‐delta mice had lower PoDs than those calculated from the Muta™Mouse and CD1 mouse data. Our results indicate that the magnitude and possibly the shape of mutagenicity dose responses differ between in vivo models, with lower PoDs generally detected by gene mutation assays with lower backgrounds. Environ. Mol. Mutagen. 55:385–399, 2014.
Mutagenesis | 2016
John W. Wills; George E. Johnson; Shareen H. Doak; Lya G. Soeteman-Hernández; Wout Slob; Paul A. White
Genetic toxicity testing has traditionally been used for hazard identification, with dichotomous classification of test results serving to identify genotoxic agents. However, the utility of genotoxicity data can be augmented by employing dose-response analysis and point of departure determination. Via interpolation from a fitted dose-response model, the benchmark dose (BMD) approach estimates the dose that elicits a specified (small) effect size. BMD metrics and their confidence intervals can be used for compound potency ranking within an endpoint, as well as potency comparisons across other factors such as cell line or exposure duration. A recently developed computational method, the BMD covariate approach, permits combined analysis of multiple dose-response data sets that are differentiated by covariates such as compound, cell type or exposure regime. The approach provides increased BMD precision for effective potency rankings across compounds and other covariates that pertain to a hypothesised mode of action (MOA). To illustrate these applications, the covariate approach was applied to the analysis of published in vitro micronucleus frequency dose-response data for ionising radiations, a set of aneugens, two mutagenic azo compounds and a topoisomerase II inhibitor. The ionising radiation results show that the precision of BMD estimates can be improved by employing the covariate method. The aneugen analysis provided potency groupings based on the BMD confidence intervals, and analyses of azo compound data from cells lines with differing metabolic capacity confirmed the influence of endogenous metabolism on genotoxic potency. This work, which is the first of a two-part series, shows that BMD-derived potency rankings can be employed to support MOA evaluations as well as facilitate read across to expedite chemical evaluations and regulatory decision-making. The follow-up (Part II) employs the combined covariate approach to analyse in vivo genetic toxicity dose-response data focussing on how improvements in BMD precision can impact the reduction and refinement of animal use in toxicological research.
Critical Reviews in Toxicology | 2014
Jochem W. van der Veen; Lya G. Soeteman-Hernández; Janine Ezendam; Rob Stierum; Frieke Kuper; Henk van Loveren
Abstract Allergic contact dermatitis (ACD) is a hypersensitivity immune response induced by small protein-reactive chemicals. Currently, the murine local lymph node assay (LLNA) provides hazard identification and quantitative estimation of sensitizing potency. Given the complexity of ACD, a single alternative method cannot replace the LLNA, but it is necessary to combine methods through an integrated testing strategy (ITS). In the development of an ITS, information regarding mechanisms and molecular processes involved in skin sensitization is crucial. The recently published adverse outcome pathway (AOP) for skin sensitization captures mechanistic knowledge into key events that lead to ACD. To understand the molecular processes in ACD, a systematic review of murine in vivo studies was performed and an ACD molecular map was constructed. In addition, comparing the molecular map to the limited human in vivo toxicogenomic data available suggests that certain processes are similarly triggered in mice and humans, but additional human data will be needed to confirm these findings and identify differences. To gain insight in the molecular mechanisms represented by various human in vitro systems, the map was compared to in vitro toxicogenomic data. This analysis allows for comparison of emerging in vitro methods on a molecular basis, in addition to mathematical predictive value. Finally, a survey of the current in silico, in chemico, and in vitro methods was used to indicate which AOP key event is modeled by each method. By anchoring emerging classification methods to the AOP and the ACD molecular map, complementing methods can be identified, which provides a cornerstone for the development of a testing strategy that accurately reflects the key events in skin sensitization.
Toxicology Research | 2015
George E. Johnson; Wout Slob; Shareen H. Doak; Mick D. Fellows; B. Bhaskar Gollapudi; Robert H. Heflich; Ben J. Rees; Lya G. Soeteman-Hernández; Jatin R. Verma; John W. Wills; Gareth J. S. Jenkins; Paul A. White
Genetic toxicology testing has a crucial role in the safety assessment of new and existing substances of societal value by reducing/eliminating human exposure to potential somatic and germ cell mutagens. Genetic toxicology assays have historically been used in a qualitative manner to arrive at the binary decision of ‘yes’ or ‘no’ with regards to the mutagenic potential. However, the field is currently at a crossroads, with new methods being developed and new proposals being made to use genetic toxicity data in a more quantitative manner. Technological advances have made it possible to perform high-content, high-throughput and high-precision analysis to increase the number of “scored” events leading to increased statistical precision of the endpoint under evaluation. Automated flow cytometry and image analysis are providing significant advantages for the evaluation of gene mutations as well as cytogenetic damage both in vitro and in vivo. In addition, statistical methods such as the benchmark dose (BMD) approach can be used to identify point of departure (PoD) metrics for use in human health risk assessments, including estimation of reference dose (RfD) and margins of exposure (MOE) from in vivo data. Here we provide new data to compare different in vitro micronucleus approaches, observing that the flow based assay performs very well in defining a PoD for methyl methanesulfonate. We also present reanalysis of published in vivo Pig-a gene mutation data, to show how covariate analysis increases precision and reduces the effects of outliers when defining BMD values. Furthermore, we show how in vivo BMD metrics can be used to define RfD values, and then provide comparisons to other human exposure limit values such as permitted daily exposure (PDE). Finally, the principles of empirical correlation using BMD metrics are presented, with methods for derivation of BMD values for endpoint B, when using data from only endpoint A. These developments are opening the possibility of genetic toxicity data being used as an apical endpoint to define negligible risk in human health risk assessments. Expert groups consisting of stakeholders representing academia, industry and the government are now developing guidance on transforming genetic toxicology testing from a qualitative to a quantitative science, keeping in mind the 3R principles of animal welfare.
Toxicological Sciences | 2015
Lya G. Soeteman-Hernández; Mick D. Fellows; George E. Johnson; Wout Slob
In this study, we explored the applicability of using in vitro micronucleus (MN) data from human lymphoblastoid TK6 cells to derive in vivo genotoxicity potency information. Nineteen chemicals covering a broad spectrum of genotoxic modes of action were tested in an in vitro MN test using TK6 cells using the same study protocol. Several of these chemicals were considered to need metabolic activation, and these were administered in the presence of S9. The Benchmark dose (BMD) approach was applied using the dose-response modeling program PROAST to estimate the genotoxic potency from the in vitro data. The resulting in vitro BMDs were compared with previously derived BMDs from in vivo MN and carcinogenicity studies. A proportional correlation was observed between the BMDs from the in vitro MN and the BMDs from the in vivo MN assays. Further, a clear correlation was found between the BMDs from in vitro MN and the associated BMDs for malignant tumors. Although these results are based on only 19 compounds, they show that genotoxicity potencies estimated from in vitro tests may result in useful information regarding in vivo genotoxic potency, as well as expected cancer potency. Extension of the number of compounds and further investigation of metabolic activation (S9) and of other toxicokinetic factors would be needed to validate our initial conclusions. However, this initial work suggests that this approach could be used for in vitro to in vivo extrapolations which would support the reduction of animals used in research (3Rs: replacement, reduction, and refinement).
Toxicological Sciences | 2013
Lya G. Soeteman-Hernández; Peter M. J. Bos; Reinskje Talhout
1,3-Butadiene (BD) is a smoke component selected by the World Health Organization (WHO) study group on Tobacco Product Regulation (TobReg) for mandated lowering. We examined the tobacco smoke–related health effects induced by BD and possible health impacts of risk reduction strategies. BD levels in mainstream smoke (MSS) from international and Canadian cigarettes and environmental tobacco smoke (ETS) were derived from scientific journals and international government reports. Dose-response analyses from toxicity studies from government reports were evaluated and the most sensitive cancer and noncancer endpoints were selected. The risks were evaluated by taking the ratio (margin of exposure, MOE) from the most sensitive toxicity endpoint and appropriate exposure estimates for BD in MSS and ETS. BD is a good choice for lowering given that MSS and ETS were at levels for cancer (leukemia) and noncancer (ovarian atrophy) risks, and the risks can be significantly lowered when lowering the BD concentrations in smoke. Several risk reduction strategies were analyzed including a maximum level of 125% of the median BD value per milligram nicotine obtained from international brands as recommended by the WHO TobReg, tobacco substitute sheets, dual and triple carbon filters, and polymer-derived carbon. The use of tobacco substitute sheet with a polymer-derived carbon filter resulted in the most significant change in risk for cancer and noncancer effects. Our results demonstrate that MOE analysis might be a practical way to assess the impact of risk reduction strategies on human health in the future.
Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2015
James T. MacGregor; Roland Frötschl; Paul A. White; Kenny S. Crump; David A. Eastmond; Shoji Fukushima; Melanie Guérard; Makoto Hayashi; Lya G. Soeteman-Hernández; Toshio Kasamatsu; Dan D. Levy; Takeshi Morita; Lutz Müller; Rita Schoeny; Maik Schuler; Véronique Thybaud; George E. Johnson