Lydia F. Yamaguchi
University of São Paulo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lydia F. Yamaguchi.
Experimental Parasitology | 2011
Josué de Moraes; Carlos Nascimento; Priscilla O.M.V. Lopes; Eliana Nakano; Lydia F. Yamaguchi; Massuo J. Kato; Toshie Kawano
Schistosomiasis is one of the worlds greatly neglected tropical diseases, and its control is largely dependent on a single drug, praziquantel. Here, we report the in vitro effect of piplartine, an amide isolated from Piper tuberculatum (Piperaceae), on Schistosoma mansoni adult worms. A piplartine concentration of 15.8 μM reduced the motor activity of worms and caused their death within 24h in a RPMI 1640 medium. Similarly, the highest sub-lethal concentration of piplartine (6.3 μM) caused a 75% reduction in egg production in spite of coupling. Additionally, piplartine induced morphological changes on the tegument, and a quantitative analysis carried out by confocal microscopy revealed an extensive tegumental destruction and damage in the tubercles. This damage was dose-dependent in the range of 15.8-630.2 μM. At doses higher than 157.6 μM, piplartine induced morphological changes in the oral and ventral sucker regions of the worms. It is the first time that the schistosomicidal activity has been reported for piplartine.
Experimental Parasitology | 2012
Josué de Moraes; Carlos Nascimento; Lydia F. Yamaguchi; Massuo J. Kato; Eliana Nakano
Schistosomiasis is one of the most important parasitic infections in humans that occur in many tropical and subtropical countries. Currently, the control of schistosomiasis rests with a single drug, praziquantel, which is effective against adult worms but not the larval stages. Recent studies have shown that piplartine, an amide isolated from plants of the genus Piper (Piperaceae), reveals interesting antischistosomal properties against Schistosoma mansoni adult worms. Here, we report the in vitro antischistosomal activity of piplartine on S. mansoni schistosomula of different ages (3 h old and 1, 3, 5, and 7 days old), and examine alterations on the tegumental surface of worms by means of confocal laser scanning microscopy. Piplartine at a concentration of 7.5 μM caused the death of all schistosomula within 120 h. The lethal effect occurred in a dose-dependent manner and was also dependent on the age of the parasite. Microscopy observation revealed extensive tegumental destruction, including blebbing, granularity, and a shorter body length. This report provides the first evidence that piplartine is able to kill schistosomula of different ages and reinforce that piplartine is a promising compound that could be used for the development of new schistosomicidal agent.
Journal of Helminthology | 2011
Ludmila Nakamura Rapado; Eliana Nakano; F.P. Ohlweiler; Massuo J. Kato; Lydia F. Yamaguchi; Carlos Alberto Pereira; Toshie Kawano
Schistosomiasis is a tropical disease caused by Schistosoma and occurs in 54 countries, mainly in South America, the Caribbean region, Africa and the eastern Mediterranean. Currently, 5 to 6 million Brazilian people are infected and 30,000 are under infection risk. Typical of poor regions, this disease is associated with the lack of basic sanitation and very frequently to the use of contaminated water in agriculture, housework and leisure. One of the most efficient methods of controlling the disease is application of molluscicides to eliminate or to reduce the population of the intermediate host snail Biomphalaria glabrata. Studies on molluscicidal activity of plant extracts have been stimulated by issues such as environmental preservation, high cost and recurrent resistance of snails to synthetic molluscicides. The aim of this study was to determine the molluscicide action of extracts from Piperaceae species on adult and embryonic stages of B. glabrata. Fifteen extracts from 13 Piperaceae species were obtained from stems, leaves and roots. Toxicity of extracts was evaluated against snails at two different concentrations (500 and 100 ppm) and those causing 100% mortality at 100 ppm concentration were selected to obtain the LC₉₀ (lethal concentration of 90% mortality). Piper aduncum, P. crassinervium, P. cuyabanum, P. diospyrifolium and P. hostmannianum gave 100% mortality of adult snails at concentrations ranging from 10 to 60 ppm. These extracts were also assayed on embryonic stages of B. glabrata and those from P. cuyabanum and P. hostmannianum showed 100% ovicidal action at 20 ppm.
Environmental Research | 2014
Carlos L. Céspedes; Juan R. Salazar; Armando Ariza-Castolo; Lydia F. Yamaguchi; Jose G. Avila; Pedro Aqueveque; Isao Kubo; Julio Alarcón
The effects of persistent organic pollutants (POPs) on humans and biodiversity are multiple and varied. Nowadays environmentally-friendly pesticides are strongly preferred to POPs. It is noteworthy that the crop protection role of pesticides and other techniques, i.e. biopesticides, plant extracts, prevention methods, organic methods, evaluation of plant resistance to certain pests under an integrated pest management (IPM), could improve the risks and benefits which must be assessed on a sound scientific basis. For this directive it is crucial to bring about a significant reduction in the use of chemical pesticides, not least through the promotion of sustainable alternative solutions such as organic farming and IPM. Biopesticides are derived from natural materials such as animals, plants, bacteria, and certain minerals. Most of them are biodegradable in relatively short periods of time. On this regard, substances from Calceolaria species emerge as a strong alternative to the use of POPs. The American genus Calceolaria species are regarded both as a notorious weeds and popular ornamental garden plants. Some have medicinal applications. Other taxa of Calceolaria are toxic to insects and resistant to microbial attack. These properties are probably associated with the presence of terpenes, iridoids, flavonoids, naphthoquinones and phenylpropanoids previously demonstrated to have interesting biological activities. In this article a comprehensive evaluation of the potential utilization of Calceolaria species as a source of biopesticides is made. The chemical profile of selected members of the Chilean Calceolaria integrifolia sensu lato complex represents a significant addition to previous studies. New secondary metabolites were isolated, identified and tested for their antifeedant, insect growth regulation and insecticidal activities against Spodoptera frugiperda and Drosophila melanogaster. These species serve as a model of insect pests using conventional procedures. Additionally, bactericidal and fungicidal activity were determined. Dunnione mixed with gallic acid was the most active fungistatic and fungicidal combination encountered. Several compounds as isorhamnetin, combined with ferulic and gallic acid quickly reduced cell viability, but cell viability was recovered quickly and did not differ from that of the control. The effect of these mixtures on cultures of Aspergillus niger, Fusarium moniliforme, Fusarium sporotrichum, Rhizoctonia solani, and Trichophyton mentagrophytes, was sublethal. However, when fungistatic isorhamnetin and dunnione were combined with sublethal amounts of both ferulic and gallic acid, respectively, strong fungicidal activity against theses strains was observed. Thus, dunnione combined with gallic acid completely restricted the recovery of cell viability. This apparent synergistic effect was probably due to the blockade of the recovery process from induced-stress. The same series of phenolics (iridoids, flavonoids, naphthoquinones and phenylpropanoids) were also tested against the Gram-negative bacteria Escherichia coli, Enterobacter agglomerans, and Salmonella typhi, and against the Gram-positive bacteria Bacillus subtilis, Sarcinia lutea, and Staphylococcus aureus and their effects compared with those that of kanamycin. Mixtures of isorhamnetin/dunnione/kaempferol/ferulic/gallic acid in various combinations were found to have the most potent bactericidal and fungicidal activity with MFC between 10 and 50 μg/ml. Quercetin was found to be the most potent fungistatic single compound with an MIC of 15 µg/ml. A time-kill curve study showed that quercetin was fungicidal against fungi assayed at any growth stage. This antifungal activity was slightly enhanced by combination with gallic acid. The primary antifungal action of the mixtures assayed likely comes from their ability to act as nonionic surfactants that disrupt the function of native membrane-associated proteins. Hence, the antifungal activity of isorhamnetin and other O-methyl flavonols appears to be mediated by biophysical processes. Maximum activity is obtained when the balance between hydrophilic and hydrophobic portions of the molecules of the mixtures becomes the most appropriate. Diterpenes, flavonoids, phenylpropanoids, iridoids and phenolic acids were identified by chromatographic procedures (HPLC-DAD), ESI-MS, and NMR hyphenated techniques.
Current Medicinal Chemistry | 2012
J. de Moraes; J. Keiser; K. Ingram; Carlos Nascimento; Lydia F. Yamaguchi; C.R. Bittencourt; M.P. Bemquerer; José Roberto S. A. Leite; Massuo J. Kato; Eliana Nakano
Schistosomiasis is one of the worlds major public health problems, and praziquantel is the only available drug to treat this notable neglected disease. Drug combinations have been considered an important strategy for treatment of infectious diseases, which might enhance therapeutic efficacy and delaying resistance. In this study, we have examined the in vitro activities of the amide piplartine and the antimicrobial peptide dermaseptin 01 administered singly or in combination against Schistosoma mansoni of different ages including 3-hour-old and 7-day-old schistosomula and 49-day-old adult schistosomes as well as on egg output by adult worms. We calculated the median lethal concentrations (LC(50)) of 7.87 and 17.99 μM on 49-day-old adults, 11.02 and 71.58 μM on 7-day-old schistosomula, and 70.87 and 98.42 μM on 3-hour-old schistosomula for piplartine and dermaseptin, respectively. Most Piplartine/dermaseptin combinations showed synergistic effect, with combination index (CI) values less than 0.9 when S. mansoni adults or schistosomula were simultaneously incubated with both drugs in vitro; synergy between these two compounds was also indicated using isobolograms. Additionally, we observed alterations on the tegumental surface of schistosomula and adult schistosomes by means of laser scanning confocal microscopy. Furthermore, egg laying of surviving worms was considerably more reduced when exposed to the piplartine/dermaseptin combinations than each drug alone, and this inhibition was irreversible. This is the first report on the synergistic effect between piplartine and dermaseptin against S. mansoni and opens the route to further studies (e.g. in vivo) to characterize this combination in greater detail.
Scientific Reports | 2015
Miguel J. Beltran-Garcia; James F. White; Fernanda M. Prado; Katia R. Prieto; Lydia F. Yamaguchi; Mónica S. Torres; Massuo J. Kato; Marisa H. G. Medeiros; Paolo Di Mascio
Plants form symbiotic associations with endophytic bacteria within tissues of leaves, stems, and roots. It is unclear whether or how plants obtain nitrogen from these endophytic bacteria. Here we present evidence showing nitrogen flow from endophytic bacteria to plants in a process that appears to involve oxidative degradation of bacteria. In our experiments we employed Agave tequilana and its seed-transmitted endophyte Bacillus tequilensis to elucidate organic nitrogen transfer from 15N-labeled bacteria to plants. Bacillus tequilensis cells grown in a minimal medium with 15NH4Cl as the nitrogen source were watered onto plants growing in sand. We traced incorporation of 15N into tryptophan, deoxynucleosides and pheophytin derived from chlorophyll a. Probes for hydrogen peroxide show its presence during degradation of bacteria in plant tissues, supporting involvement of reactive oxygen in the degradation process. In another experiment to assess nitrogen absorbed as a result of endophytic colonization of plants we demonstrated that endophytic bacteria potentially transfer more nitrogen to plants and stimulate greater biomass in plants than heat-killed bacteria that do not colonize plants but instead degrade in the soil. Findings presented here support the hypothesis that some plants under nutrient limitation may degrade and obtain nitrogen from endophytic microbes.
PLOS Neglected Tropical Diseases | 2013
Ludmila Nakamura Rapado; Alessandro de Sá Pinheiro; Priscila Orechio de Moraes Victor Lopes; Harold Hilarion Fokoue; Marcus T. Scotti; Joaquim V. Marques; Fernanda Pires Ohlweiler; Sueli Ivone Borrely; Carlos Alberto Pereira; Massuo J. Kato; Eliana Nakano; Lydia F. Yamaguchi
Background Schistosomiasis is one of the most significant diseases in tropical countries and affects almost 200 million people worldwide. The application of molluscicides to eliminate the parasites intermediate host, Biomphalaria glabrata, from infected water supplies is one strategy currently being used to control the disease. Previous studies have shown a potent molluscicidal activity of crude extracts from Piper species, with extracts from Piper tuberculatum being among the most active. Methods and Findings The molluscicidal activity of P. tuberculatum was monitored on methanolic extracts from different organs (roots, leaves, fruit and stems). The compounds responsible for the molluscicidal activity were identified using 1H NMR and ESIMS data and multivariate analyses, including principal component analysis and partial least squares. These results indicated that the high molluscicidal activity displayed by root extracts (LC50 20.28 µg/ml) was due to the presence of piplartine, a well-known biologically-active amide. Piplartine was isolated from P. tuberculatum root extracts, and the molluscicidal activity of this compound on adults and embryos of B. glabrata was determined. The compound displayed potent activity against all developmental stages of B. glabrata. Next, the environmental toxicity of piplartine was evaluated using the microcrustacean Daphnia similis (LC50 7.32 µg/ml) and the fish Danio rerio (1.69 µg/ml). The toxicity to these organisms was less compared with the toxicity of niclosamide, a commercial molluscicide. Conclusions The development of a new, natural molluscicide is highly desirable, particularly because the commercially available molluscicide niclosamide is highly toxic to some organisms in the environment (LC50 0.25 µg/ml to D. similis and 0.12 µg/ml to D. rerio). Thus, piplartine is a potential candidate for a natural molluscicide that has been extracted from a tropical plant species and showed less toxic to environment.
Food and Chemical Toxicology | 2013
Carlos L. Céspedes; Evelyn Muñoz; Juan R. Salazar; Lydia F. Yamaguchi; Enrique Werner; Julio Alarcón; Isao Kubo
Extracts, fractions and compounds from Calceolaria talcana and C. integrifolia exhibited strong inhibitory effects of the activity of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes using the in vitro Ellmańs method. The most active samples were from the ethyl acetate extract, which caused a mixed-type inhibition against AChE (69.8% and 79.5% at 100 and 200 μg/ml, respectively) and against BChE (98.5% and 99.8% at 100 and 200 μg/ml, respectively) and its major components verbascoside 8 (50.9 and 70.0% at 200 μg/ml, against AChE and BChE, respectively), martynoside 9, and fraction F-7 (which corresponds to a mixture of 8, 9, and other phenylethanoids and phenolics that remain unidentified) (80.2 and 85.3% at 100 and 200 μg/ml, against AChE, respectively and 99.1 and 99.7% at 100 and 200 μg/ml, against BChE, respectively) inhibited the acetylcholinesterase enzyme competitively. The most polar fraction F-5 from n-hexane extract (a mixture of naphthoquinones: 2-hydroxy-3-(1,1-dimethylallyl-1,4-naphthoquinone) 6, α-dunnione 7 and other polar compounds that remain unidentified) showed a mixed-type inhibition (71.5 and 72.1% against AChE and BChE at 200 μg/ml, respectively). Finally, the methanol-soluble residue presented a complex, mixed-type inhibition (39.9 and 67.9% against AChE and BChE at 200 μg/ml, respectively). The mixture F-3 with diterpenes was obtained from the n-hexane extract: (1,10-cyclopropyl-9-epi-ent-isopimarol) 1, 19-α-hydroxy-abietatriene 2, and F-4 a mixture of triterpenes α-lupeol 3, β-sitosterol 4, ursolic acid 5 together with a complex mixture of terpenes that did not show activity. In summary, extracts and natural compounds from C. talcana and C. integrifolia were isolated, identified and characterized as cholinesterase inhibitors.
Journal of Agricultural and Food Chemistry | 2014
Paula Feliciano de Lima; Carlos Augusto Colombo; Alisson Fernando Chiorato; Lydia F. Yamaguchi; Massuo J. Kato; Sérgio Augusto Morais Carbonell
Common bean (Phaseolus vulgaris) is present in the daily diet of various countries and, as for other legumes, has been investigated for its nutraceutical potential. Thus, 16 genotypes from different gene pools, representing seven types of seed coats and different responses to pathogens and pests, were selected to verify their isoflavone contents. The isoflavonoids daidzein and genistein and the flavonols kaempferol, myricetin, and quercetin were found. Grains of the black type showed the highest concentrations of isoflavonoids and were the only ones to exhibit daidzein. IAC Formoso, with high protein content and source of resistance to anthracnose, showed the greatest concentration of genistein, representing around 11% of the content present in soybean, as well as high levels of kaempferol. Arc 1, Raz 55, and IAC Una genotypes showed high content of coumestrol. The results suggest the use of IAC Formoso to increase the nutraceutical characteristics in common bean.
Biomedicine & Pharmacotherapy | 2017
Yuri D. M. Campelo; Ana C. Mafud; Leiz Maria Costa Véras; Maria A. Guimarães; Lydia F. Yamaguchi; David F. Lima; Daniel Dias Rufino Arcanjo; Massuo J. Kato; Ronaldo Z. Mendonça; Pedro Luiz Silva Pinto; Yvonne P. Mascarenhas; Marcos P.N. Silva; Josué de Moraes; Peter Eaton; José Roberto S. A. Leite
Schistosomiasis is a world health problem, and praziquantel is the only drug currently used for the treatment. There is some evidence that extensive monotherapy of praziquantel may be leading to drug resistance in the parasite. In order to find alternative treatments, the effects of the combination of epiisopiloturine (EPI), piplartine (PPT) and praziquantel (PZQ) were evaluated. Similarity analysis of these compounds was performed using optimized molecular structures to compare the shape and the charge modeling of combinations between PZQ and EPI or PPT. Supported by this data, in vitro association of PZQ-PPT, PZQ-EPI, and EPI-PPT was carried out, and the activity of these combinations against Schistosoma mansoni was assessed. The results showed synergistic activity with a combination index (CI) of 0.42 for the treatment with PZQ-PPT. Both PZQ-EPI and EPI-PPT combinations also showed synergistic effects, with CI values of 0.86 and 0.61, respectively. Surface alterations in the tegument of adult schistosomes after the treatments were observed using laser confocal microscopy and scanning electron microscopy. Additionally, the association of EPI-PPT decreased the cytotoxicity when compared with both isolated compounds in three different lines of mammalian cells. Thus, synergistic combinations of PZQ-PPT, PZQ-EPI, and EPI-PPT create the possibility of reduced doses to be used against Schistosoma mansoni.