Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lydia K. Greene is active.

Publication


Featured researches published by Lydia K. Greene.


American Journal of Primatology | 2013

The "secret" in secretions: methodological considerations in deciphering primate olfactory communication.

Christine M. Drea; Marylène Boulet; Javier delBarco-Trillo; Lydia K. Greene; C.R. Sacha; Thomas E. Goodwin; George R. Dubay

Olfactory communication in primates is gaining recognition; however, studies on the production and perception of primate scent signals are still scant. In general, there are five tasks to be accomplished when deciphering the chemical signals contained in excretions and secretions: (1) obtaining the appropriate samples; (2) extracting the target organic compounds from the biological matrix; (3) separating the extracted compounds from one another (by gas chromatography, GC or liquid chromatography, LC); (4) identifying the compounds (by mass spectrometry, MS and associated procedures); and (5) revealing biologically meaningful patterns in the data. Ultimately, because some of the compounds identified in odorants may not be relevant, associated steps in understanding signal function involve verifying the perception or biological activity of putative semiochemicals via (6) behavioral bioassays or (7) receptor response studies. This review will focus on the chemical analyses and behavioral bioassays of volatile, primate scent signals. Throughout, we highlight the potential pitfalls of working with highly complex, chemical matrices and suggest ways for minimizing problems. A recurring theme in this review is that multiple approaches and instrumentation are required to characterize the full range of information contained in the complex mixtures that typify primate or, indeed, many vertebrate olfactory cues. Only by integrating studies of signal production with those verifying signal perception will we better understand the function of olfactory communication. Am. J. Primatol. 75:621–642, 2013.


Scientific Reports | 2017

Social odours covary with bacterial community in the anal secretions of wild meerkats

Sarah Leclaire; Staffan Jacob; Lydia K. Greene; George R. Dubay; Christine M. Drea

The fermentation hypothesis for animal signalling posits that bacteria dwelling in an animal’s scent glands metabolize the glands’ primary products into odorous compounds used by the host to communicate with conspecifics. There is, however, little evidence of the predicted covariation between an animal’s olfactory cues and its glandular bacterial communities. Using gas chromatography-mass spectrometry, we first identified the volatile compounds present in ‘pure’ versus ‘mixed’ anal-gland secretions (‘paste’) of adult meerkats (Suricata suricatta) living in the wild. Low-molecular-weight chemicals that likely derive from bacterial metabolism were more prominent in mixed than pure secretions. Focusing thereafter on mixed secretions, we showed that chemical composition varied by sex and was more similar between members of the same group than between members of different groups. Subsequently, using next-generation sequencing, we identified the bacterial assemblages present in meerkat paste and documented relationships between these assemblages and the host’s sex, social status and group membership. Lastly, we found significant covariation between the volatile compounds and bacterial assemblages in meerkat paste, particularly in males. Together, these results are consistent with a role for bacteria in the production of sex- and group-specific scents, and with the evolution of mutualism between meerkats and their glandular microbiota.


Animal Behaviour | 2014

Love is in the air: Sociality and pair bondedness influence sifaka reproductive signalling

Lydia K. Greene; Christine M. Drea

Social complexity, often estimated by group size, is seen as driving the complexity of vocal signals, but its relation to olfactory signals, which arguably arose to function in nonsocial realms, remains underappreciated. That olfactory signals also may mediate within-group interaction, vary with social complexity and promote social cohesion underscores a potentially crucial link with sociality. To examine that link, we integrated chemical and behavioural analyses to ask whether olfactory signals facilitate reproductive coordination in a strepsirrhine primate, the Coquerels sifaka, Propithecus coquereli. Belonging to a clade comprising primarily solitary, nocturnal species, the diurnal, group-living sifaka represents an interesting test case. Convergent with diurnal, group-living lemurids, sifakas expressed chemically rich scent signals, consistent with the social complexity hypothesis for communication. These signals minimally encoded the sex of the signaller and varied with female reproductive state. Likewise, sex and female fertility were reflected in within-group scent investigation, scent marking and overmarking. We further asked whether, within breeding pairs, the stability or quality of the pairs bond influences the composition of glandular signals and patterns of investigatory or scent-marking behaviour. Indeed, reproductively successful pairs tended to show greater similarity in their scent signals than did reproductively unsuccessful pairs, potentially through chemical convergence. Moreover, scent marking was temporally coordinated within breeding pairs and was influenced by past reproductive success. That olfactory signalling reflects social bondedness or reproductive history lends support to recent suggestions that the quality of relationships may be a more valuable proxy than group size for estimating social complexity. We suggest that olfactory signalling in sifakas is more complex than previously recognized and, as in other socially integrated species, can be a crucial mechanism for promoting group cohesion and maintaining social bonds. Thus, the evolution of sociality may well be reflected in the complexity of olfactory signalling.


Scientific Reports | 2016

Exceptional endocrine profiles characterise the meerkat : sex, status, and reproductive patterns

Charli S. Davies; Kendra N. Smyth; Lydia K. Greene; Debbie A Walsh; Jessica Mitchell; T. H. Clutton-Brock; Christine M. Drea

In vertebrates, reproductive endocrine concentrations are strongly differentiated by sex, with androgen biases typifying males and estrogen biases typifying females. These sex differences can be reduced in female-dominant species; however, even the most masculinised of females have less testosterone (T) than do conspecific males. To test if aggressively dominant, female meerkats (Suricata suricatta) may be hormonally masculinised, we measured serum androstenedione (A4), T and estradiol (E2) in both sexes and social classes, during both ‘baseline’ and reproductive events. Relative to resident males, dominant females had greater A4, equivalent T and greater E2 concentrations. Males, whose endocrine values did not vary by social status, experienced increased T during reproductive forays, linking T to sexual behaviour, but not social status. Moreover, substantial E2 concentrations in male meerkats may facilitate their role as helpers. In females, dominance status and pregnancy magnified the unusual concentrations of measured sex steroids. Lastly, faecal androgen metabolites replicated the findings derived from serum, highlighting the female bias in total androgens. Female meerkats are thus strongly hormonally masculinised, possibly via A4’s bioavailability for conversion to T. These raised androgen concentrations may explain female aggressiveness in this species and give dominant breeders a heritable mechanism for their daughters’ competitive edge.


Royal Society Open Science | 2016

Mix it and fix it: functions of composite olfactory signals in ring-tailed lemurs.

Lydia K. Greene; Kathleen E. Grogan; Kendra N. Smyth; Christine A. Adams; Skylar A. Klager; Christine M. Drea

Animals communicating via scent often deposit composite signals that incorporate odorants from multiple sources; however, the function of mixing chemical signals remains understudied. We tested both a ‘multiple-messages’ and a ‘fixative’ hypothesis of composite olfactory signalling, which, respectively, posit that mixing scents functions to increase information content or prolong signal longevity. Our subjects—adult, male ring-tailed lemurs (Lemur catta)—have a complex scent-marking repertoire, involving volatile antebrachial (A) secretions, deposited pure or after being mixed with a squalene-rich paste exuded from brachial (B) glands. Using behavioural bioassays, we examined recipient responses to odorants collected from conspecific strangers. We concurrently presented pure A, pure B and mixed A + B secretions, in fresh or decayed conditions. Lemurs preferentially responded to mixed over pure secretions, their interest increasing and shifting over time, from sniffing and countermarking fresh mixtures, to licking and countermarking decayed mixtures. Substituting synthetic squalene (S)—a well-known fixative—for B secretions did not replicate prior results: B secretions, which contain additional chemicals that probably encode salient information, were preferred over pure S. Whereas support for the ‘multiple-messages’ hypothesis underscores the unique contribution from each of an animals various secretions, support for the ‘fixative’ hypothesis highlights the synergistic benefits of composite signals.


Biology Letters | 2016

Androgens predict parasitism in female meerkats: a new perspective on a classic trade-off

Kendra N. Smyth; Lydia K. Greene; T. H. Clutton-Brock; Christine M. Drea

The immunocompetence handicap hypothesis posits that androgens in males can be a ‘double-edged sword’, actively promoting reproductive success, while also negatively impacting health. Because there can be both substantial androgen concentrations in females and significant androgenic variation among them, particularly in species portraying female social dominance over males or intense female–female competition, androgens might also play a role in mediating female health and fitness. We examined this hypothesis in the meerkat (Suricata suricatta), a cooperatively breeding, social carnivoran characterized by aggressively mediated female social dominance and extreme rank-related reproductive skew. Dominant females also have greater androgen concentrations and harbour greater parasite loads than their subordinate counterparts, but the relationship between concurrent androgen concentrations and parasite burdens is unknown. We found that a females faecal androgen concentrations reliably predicted her concurrent state of endoparasitism irrespective of her social status: parasite species richness and infection by Spirurida nematodes, Oxynema suricattae, Pseudandrya suricattae and coccidia were greater with greater androgen concentrations. Based on gastrointestinal parasite burdens, females appear to experience the same trade-off in the costs and benefits of raised androgens as do the males of many species. This trade-off presumably represents a health cost of sexual selection operating in females.


Microbial Ecology in Health and Disease | 2017

Down for the count: Cryptosporidium infection depletes the gut microbiome in Coquerel’s sifakas

Erin A. McKenney; Lydia K. Greene; Christine M. Drea; Anne D. Yoder

ABSTRACT Background: The gut microbiome (GMB) is the first line of defense against enteric pathogens, which are a leading cause of disease and mortality worldwide. One such pathogen, the protozoan Cryptosporidium, causes a variety of digestive disorders that can be devastating and even lethal. The Coquerel’s sifaka (Propithecus coquereli) – an endangered, folivorous primate endemic to Madagascar – is precariously susceptible to cryptosporidiosis under captive conditions. If left untreated, infection can rapidly advance to morbidity and death. Objective: To gain a richer understanding of the pathophysiology of this pathogen while also improving captive management of endangered species, we examine the impact of cryptosporidiosis on the GMB of a flagship species known to experience a debilitating disease state upon infection. Design: Using 16S sequencing of DNA extracted from sifaka fecal samples, we compared the microbial communities of healthy sifakas to those of infected individuals, across infection and recovery periods. Results: Over the course of infection, we found that the sifaka GMB responds with decreased microbial diversity and increased community dissimilarity. Compared to the GMB of unaffected individuals, as well as during pre-infection and recovery periods, the GMB during active infection was enriched for microbial taxa associated with dysbiosis and rapid transit time. Time to recovery was inversely related to age, with young animals being slowest to recover GMB diversity and full community membership. Antimicrobial treatment during infection caused a significant depletion in GMB diversity. Conclusions: Although individual sifakas show unique trajectories of microbial loss and recolonization in response to infection, recovering sifakas exhibit remarkably consistent patterns, similar to initial community assembly of the GMB in infants. This observation, in particular, provides biological insight into the rules by which the GMB recovers from the disease state. Fecal transfaunation may prove effective in restoring a healthy GMB in animals with specialized diets.


Naturwissenschaften | 2016

Reproductive endocrine patterns and volatile urinary compounds of Arctictis binturong: discovering why bearcats smell like popcorn

Lydia K. Greene; Timothy W. Wallen; Anneke Moresco; Thomas E. Goodwin; Christine M. Drea

Members of the order Carnivora rely on urinary scent signaling, particularly for communicating about reproductive parameters. Here, we describe reproductive endocrine patterns in relation to urinary olfactory cues in a vulnerable and relatively unknown viverrid—the binturong (Arctictis binturong). Female binturongs are larger than and dominate males, and both sexes engage in glandular and urinary scent marking. Using a large (n = 33), captive population, we collected serum samples to measure circulating sex steroids via enzyme immunoassay and urine samples to assay volatile chemicals via gas chromatography–mass spectrometry. Male binturongs had expectedly greater androgen concentrations than did females but, more unusually, had equal estrogen concentrations, which may be linked to male deference. Males also expressed a significantly richer array of volatile chemical compounds than did females. A subset of these volatile chemicals resisted decay at ambient temperatures, potentially indicating their importance as long-lasting semiochemicals. Among these compounds was 2-acetyl-1-pyrroline (2-AP), which is typically produced at high temperatures by the Maillard reaction and is likely to be responsible for the binturong’s characteristic popcorn aroma. 2-AP, the only compound expressed by all of the subjects, was found in greater abundance in males than females and was significantly and positively related to circulating androstenedione concentrations in both sexes. This unusual compound may have a more significant role in mammalian semiochemistry than previously appreciated. Based on these novel data, we suggest that hormonal action and potentially complex chemical reactions mediate communication of the binturong’s signature scent and convey information about sex and reproductive state.


Scientific Reports | 2018

The critical role of dietary foliage in maintaining the gut microbiome and metabolome of folivorous sifakas

Lydia K. Greene; Erin A. McKenney; Thomas M. O’Connell; Christine M. Drea

The gut microbiome (GMB) of folivores metabolizes dietary fiber into nutrients, including short-chain fatty acids (SCFAs); however, experiments probing the consequences of foliage quality on host GMBs are lacking. We therefore examined GMB structure and function via amplicon sequencing and Nuclear Magnetic Resonance spectroscopy in 31 captive sifakas (Propithecus coquereli) during dietary manipulations associated with husbandry. Supplementing standard diets with diverse foliage blends, versus with a single plant species, promoted more diverse GMBs, enriched for taxa implicated in plant-fiber metabolism, but depleted in taxa implicated in starch metabolism and bile tolerance. The consumption of diverse blends was associated with greater concentrations of colonic SCFAs. Abundant foliage, via forest access, promoted compositionally distinct and more stable GMBs, but reduced concentrations of SCFAs, possibly reflecting selection of high-quality leaves. In 11 subjects denied forest access, we examined the temporal pace of microbial shifts when supplemental foliage was abruptly switched between diverse blends and single species. The sifaka GMB responded within days, with community diversity and composition closely tracking foliage diversity. By providing experimental evidence that the folivore GMB is sensitive to minor changes in dietary foliage, we reveal the fragility of specialist GMBs, with implications for managing the wellbeing of endangered wildlife.


Hormones and Behavior | 2016

Beyond aggression: Androgen-receptor blockade modulates social interaction in wild meerkats

Javier delBarco-Trillo; Lydia K. Greene; Ines Braga Goncalves; Miriam Fenkes; Jillian H. Wisse; Julian A. Drewe; Marta B. Manser; T. H. Clutton-Brock; Christine M. Drea

Collaboration


Dive into the Lydia K. Greene's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erin A. McKenney

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C.R. Sacha

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge