Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lydie Canier is active.

Publication


Featured researches published by Lydie Canier.


The New England Journal of Medicine | 2016

A Worldwide Map of Plasmodium falciparum K13-Propeller Polymorphisms.

Didier Ménard; Nimol Khim; Johann Beghain; Ayola A. Adegnika; Mohammad Shafiul-Alam; Olukemi K. Amodu; Ghulam Rahim-Awab; Céline Barnadas; Antoine Berry; Yap Boum; Maria D. Bustos; Jun Cao; Jun-Hu Chen; Louis Collet; Liwang Cui; Garib-Das Thakur; Alioune Dieye; Djibrine Djalle; Monique A. Dorkenoo; Carole E. Eboumbou-Moukoko; Fe-Esperanza-Caridad J. Espino; Thierry Fandeur; Maria-Fatima Ferreira-da-Cruz; Abebe A. Fola; Hans-Peter Fuehrer; Abdillahi M. Hassan; Sócrates Herrera; Bouasy Hongvanthong; Sandrine Houzé; Maman L. Ibrahim

BACKGROUND Recent gains in reducing the global burden of malaria are threatened by the emergence of Plasmodium falciparum resistance to artemisinins. The discovery that mutations in portions of a P. falciparum gene encoding kelch (K13)-propeller domains are the major determinant of resistance has provided opportunities for monitoring such resistance on a global scale. METHODS We analyzed the K13-propeller sequence polymorphism in 14,037 samples collected in 59 countries in which malaria is endemic. Most of the samples (84.5%) were obtained from patients who were treated at sentinel sites used for nationwide surveillance of antimalarial resistance. We evaluated the emergence and dissemination of mutations by haplotyping neighboring loci. RESULTS We identified 108 nonsynonymous K13 mutations, which showed marked geographic disparity in their frequency and distribution. In Asia, 36.5% of the K13 mutations were distributed within two areas--one in Cambodia, Vietnam, and Laos and the other in western Thailand, Myanmar, and China--with no overlap. In Africa, we observed a broad array of rare nonsynonymous mutations that were not associated with delayed parasite clearance. The gene-edited Dd2 transgenic line with the A578S mutation, which expresses the most frequently observed African allele, was found to be susceptible to artemisinin in vitro on a ring-stage survival assay. CONCLUSIONS No evidence of artemisinin resistance was found outside Southeast Asia and China, where resistance-associated K13 mutations were confined. The common African A578S allele was not associated with clinical or in vitro resistance to artemisinin, and many African mutations appear to be neutral. (Funded by Institut Pasteur Paris and others.).


Malaria Journal | 2014

Spatial clustering and risk factors of malaria infections in Ratanakiri Province, Cambodia

Vincent Sluydts; Somony Heng; Marc Coosemans; Karel Van Roey; Charlotte Gryseels; Lydie Canier; Saorin Kim; Nimol Khim; Sovannaroth Siv; Vanna Mean; Sambunny Uk; Koen Peeters Grietens; Sochantha Tho; Didier Ménard

BackgroundMalaria incidence worldwide has steadily declined over the past decades. Consequently, increasingly more countries will proceed from control to elimination. The malaria distribution in low incidence settings appears patchy, and local transmission hotspots are a continuous source of infection. In this study, species-specific clusters and associated risk factors were identified based on malaria prevalence data collected in the north-east of Cambodia. In addition, Plasmodium falciparum genetic diversity, population structure and gene flows were studied.MethodIn 2012, blood samples from 5793 randomly selected individuals living in 117 villages were collected from Ratanakiri province, Cambodia. Malariometric data of each participant were simultaneously accumulated using a standard questionnaire. A two-step PCR allowed for species-specific detection of malaria parasites, and SNP-genotyping of P. falciparum was performed. SaTScan was used to determine species-specific areas of elevated risk to infection, and univariate and multivariate risk analyses were carried out.ResultPCR diagnosis found 368 positive individuals (6.4%) for malaria parasites, of which 22% contained mixed species infections. The occurrence of these co-infections was more frequent than expected. Specific areas with elevated risk of infection were detected for all Plasmodium species. The clusters for Falciparum, Vivax and Ovale malaria appeared in the north of the province along the main river, while the cluster for Malariae malaria was situated elsewhere. The relative risk to be a malaria parasite carrier within clusters along the river was twice that outside the area. The main risk factor associated with three out of four malaria species was overnight stay in the plot hut, a human behaviour associated with indigenous farming. Haplotypes did not show clear geographical population structure, but pairwise Fst value comparison indicated higher parasite flow along the river.DiscussionSpatial aggregation of malaria parasite carriers, and the identification of malaria species-specific risk factors provide key insights in malaria epidemiology in low transmission settings, which can guide targeted supplementary interventions. Consequently, future malaria programmes in the province should implement additional specific policies targeting households staying overnight at their farms outside the village, in addition to migrants and forest workers.


PLOS ONE | 2014

Field trial evaluation of the performances of point-of-care tests for screening G6PD deficiency in Cambodia.

Arantxa Roca-Feltrer; Nimol Khim; Saorin Kim; Sophy Chy; Lydie Canier; Alexandra Kerleguer; Pety Tor; Char Meng Chuor; Sim Kheng; Sovannaroth Siv; Patrick S. Kachur; Walter R. J. Taylor; Jimee Hwang; Didier Ménard

Background User-friendly, accurate, point-of-care rapid tests to detect glucose-6-phosphate dehydrogenase deficiency (G6PDd) are urgently needed at peripheral level to safely recommend primaquine for malaria elimination. Methods The CareStart G6PD RDT (AccessBio, New Jersey, USA), a novel rapid diagnostic test and the most commonly used test, the fluorescent spot test (FST) were assessed against the quantitatively measured G6PD enzyme activity for detecting G6PDd. Subjects were healthy males and non-pregnant females aged 18 years or older residing in six villages in Pailin Province, western Cambodia. Findings Of the 938 subjects recruited, 74 (7.9%) were severe and moderately severe G6PD deficient (enzyme activity <30%), mostly in male population; population median G6PD activity was 12.0 UI/g Hb. The performances of the CareStart G6PD RDT and the FST, according to different cut-off values used to define G6PDd were very similar. For the detection of severe and moderately severe G6PDd (enzyme activity <30%, <3.6 UI/g Hb) in males and females, sensitivity and negative (normal status) predictive value were 100% for both point-of-care tools. When the G6PDd cut-off value increased (from <40% to <60%), the sensitivity for both PoCs decreased: 93.3% to 71.7% (CareStart G6PD RDT, p = 10−6) and 95.5% to 73.2% (FST, p = 10−6) while the specificity for both PoCs remained similar: 97.4% to 98.3% (CareStart G6PD RDT, p = 0.23) and 98.7% to 99.6% (FST, p = 0.06). The cut-off values for classifying individuals as normal were 4.0 UI/g Hb and 4.3 UI/g Hb for the CareStart G6PD RDT and the FST, respectively. Conclusions The CareStart G6PD RDT reliably detected moderate and severe G6PD deficient individuals (enzyme activity <30%), suggesting that this novel point-of-care is a promising tool for tailoring appropriate primaquine treatment for malaria elimination by excluding individuals with severe G6PDd for primaquine treatment.


Malaria Journal | 2014

Plasmodium prevalence and artemisinin-resistant falciparum malaria in Preah Vihear Province, Cambodia: a cross-sectional population-based study

Philippe Bosman; Jorgen Stassijns; Fabienne Nackers; Lydie Canier; Nimol Kim; Saorin Khim; Sweet C. Alipon; Meng Chuor Char; Nguon Chea; Lek Dysoley; Rafael Van den Bergh; William Etienne; Martin De Smet; Didier Ménard; Jean-Marie Kindermans

BackgroundIntensified efforts are urgently needed to contain and eliminate artemisinin-resistant Plasmodium falciparum in the Greater Mekong subregion. Médecins Sans Frontières plans to support the Ministry of Health in eliminating P. falciparum in an area with artemisinin resistance in the north-east of Cambodia. As a first step, the prevalence of Plasmodium spp. and the presence of mutations associated with artemisinin resistance were evaluated in two districts of Preah Vihear Province.MethodsA cross-sectional population-based study using a two-stage cluster sampling was conducted in the rural districts of Chhaeb and Chey Saen, from September to October 2013. In each district, 30 clusters of 10 households were randomly selected. In total, blood samples were collected for 1,275 participants in Chhaeb and 1,224 in Chey Saen. Prevalence of Plasmodium spp. was assessed by PCR on dried blood spots. Plasmodium falciparum positive samples were screened for mutations in the K13-propeller domain gene (PF3D7_1343700).ResultThe prevalence of Plasmodium spp. was estimated at 1.49% (95% CI 0.71–3.11%) in Chhaeb and 2.61% (95% CI 1.45–4.66%) in Chey Saen. Twenty-seven samples were positive for P. falciparum, giving a prevalence of 0.16% (95% CI 0.04–0.65) in Chhaeb and 2.04% (95% CI 1.04–3.99%) in Chey Saen. Only 4.0% of the participants testing positive presented with fever or history of fever. K13-propeller domain mutant type alleles (C580Y and Y493H) were found, only in Chey Saen district, in seven out of 11 P. falciparum positive samples with enough genetic material to allow testing.ConclusionThe overall prevalence of P. falciparum was low in both districts but parasites presenting mutations in the K13-propeller domain gene, strongly associated with artemisinin-resistance, are circulating in Chey Saen.The prevalence might be underestimated because of the absentees – mainly forest workers - and the workers of private companies who were not included in the study. These results confirm the need to urgently develop and implement targeted interventions to contain and eliminate P. falciparum malaria in this district before it spreads to other areas.


Malaria Journal | 2012

Performance of “VIKIA Malaria Ag Pf/Pan” (IMACCESS®), a new malaria rapid diagnostic test for detection of symptomatic malaria infections

Monidarin Chou; Saorin Kim; Nimol Khim; Sophy Chy; Sarorn Sum; Lydie Canier; Chea Nguon; Didier Ménard

BackgroundRecently, IMACCESS® developed a new malaria test (VIKIA Malaria Ag Pf/Pan™), based on the detection of falciparum malaria (HRP-2) and non-falciparum malaria (aldolase).MethodsThe performance of this new malaria rapid diagnostic test (RDT) was assessed using 1,000 febrile patients seeking malaria treatment in four health centres in Cambodia from August to December 2011. The results of the VIKIA Malaria Ag Pf/Pan were compared with those obtained by microscopy, the CareStart Malaria™ RDT (AccessBio®) which is currently used in Cambodia, and real-time PCR (as “gold standard”).ResultsThe best performances of the VIKIA Malaria Ag Pf/Pan™ test for detection of both Plasmodium falciparum and non-P. falciparum were with 20–30 min reading times (sensitivity of 93.4% for P. falciparum and 82.8% for non-P. falciparum and specificity of 98.6% for P. falciparum and 98.9% for non-P. falciparum) and were similar to those for the CareStart Malaria™ test.ConclusionsThis new RDT performs similarly well as other commercially available tests (especially the CareStart Malaria™ test, used as comparator), and conforms to the World Health Organization’s recommendations for RDT performance. It is a good alternative tool for the diagnosis of malaria in endemic areas.


Lancet Infectious Diseases | 2016

Efficacy of topical mosquito repellent (picaridin) plus long-lasting insecticidal nets versus long-lasting insecticidal nets alone for control of malaria: a cluster randomised controlled trial

Vincent Sluydts; Somony Heng; Charlotte Gryseels; Lydie Canier; Saorin Kim; Karel Van Roey; Karen Kerkhof; Nimol Khim; Sokny Mao; Sambunny Uk; Siv Sovannaroth; Koen Peeters Grietens; Tho Sochantha; Didier Ménard; Marc Coosemans

BACKGROUND Although effective topical repellents provide personal protection against malaria, whether mass use of topical repellents in addition to long-lasting insecticidal nets can contribute to a further decline of malaria is not known, particularly in areas where outdoor transmission occurs. We aimed to assess the epidemiological efficacy of a highly effective topical repellent in addition to long-lasting insecticidal nets in reducing malaria prevalence in this setting. METHODS A cluster randomised controlled trial was done in the 117 most endemic villages in Ratanakiri province, Cambodia, to assess the efficacy of topical repellents in addition to long-lasting insecticidal nets in controlling malaria in a low-endemic setting. We did a pre-trial assessment of village accessibility and excluded four villages because of their inaccessibility during the rainy season. Another 25 villages were grouped because of their proximity to each other, resulting in 98 study clusters (comprising either a single village or multiple neighbouring villages). Clusters were randomly assigned (1:1) to either a control (long-lasting insecticidal nets) or intervention (long-lasting insecticidal nets plus topical repellent) study group after a restricted randomisation. All clusters received one long-lasting insecticidal net per individual, whereas those in the intervention group also received safe and effective topical repellents (picaridin KBR3023, SC Johnson, Racine, WI, USA), along with instruction and promotion of its daily use. Cross-sectional surveys of 65 randomly selected individuals per cluster were done at the beginning and end of the malaria transmission season in 2012 and 2013. The primary outcome was Plasmodium species-specific prevalence in participants obtained by real-time PCR, assessed in the intention-to-treat population. Complete safety analysis data will be published seperately; any ad-hoc adverse events are reported here. This trial is registered with ClinicalTrials.gov, number NCT01663831. FINDINGS Of the 98 clusters that villages were split into, 49 were assigned to the control group and 49 were assigned to the intervention group. Despite having a successful distribution system, the daily use of repellents was suboptimum. No post-intervention differences in PCR plasmodium prevalence were observed between study groups in 2012 (4·91% in the control group vs 4·86% in the intervention group; adjusted odds ratio [aOR] 1·01 [95% CI 0·60-1·70]; p=0·975) or in 2013 (2·96% in the control group vs 3·85% in the intervention group; aOR 1·31 [0·81-2·11]; p=0·266). Similar results were obtained according to Plasmodium species (1·33% of participants in the intervention group vs 1·10% in the intervention group were infected with Plasmodium falciparum; aOR 0·83 [0·44-1·56]; p=0·561; and 1·85% in the control group vs 2·67% in the intervention group were infected with Plasmodium vivax; aOR 1·51 [0·88-2·57]; p=0·133). 41 adverse event notifications from nine villages were received, of which 33 were classified as adverse reactions (11 of these 33 were cases of repellent abuse through oral ingestion, either accidental or not). All participants with adverse reactions fully recovered and 17 were advised to permanently stop using the repellent. INTERPRETATION Mass distribution of highly effective topical repellents in resource-sufficient conditions did not contribute to a further decline in malaria endemicity in a pre-elimination setting in the Greater Mekong subregion. Daily compliance and appropriate use of the repellents remains the main obstacle. FUNDING Bill & Melinda Gates Foundation.


International Journal for Parasitology-Drugs and Drug Resistance | 2013

Global analysis of Plasmodium falciparum Na(+)/H(+) exchanger (pfnhe-1) allele polymorphism and its usefulness as a marker of in vitro resistance to quinine.

Didier Ménard; Valérie Andriantsoanirina; Nimol Khim; Arsène Ratsimbasoa; Benoit Witkowski; Christophe Benedet; Lydie Canier; Odile Mercereau-Puijalon; Rémy Durand

The aim of this study was to provide a comprehensive analysis of the worldwide genetic polymorphism of ms4760 alleles of the pfnhe-1 gene and to discuss their usefulness as molecular marker of quinine resistance (QNR). A new numbering of ms4760 allele, classification grouping ms4760 alleles according to the number of DNNND and DDNHNDNHNND repeat motifs in blocks II and V was also proposed. A total of 1508 ms4760 sequences from isolates, culture-adapted parasites or reference strains from various geographical regions were retrieved from GenBank (last update on 15th June 2012) or from publications and were used for genetic analyses. The association of different alleles of pfnhe-1 with resistance to quinoline antimalarial drugs showed marked geographic disparities. The validity and reliability of candidate polymorphisms in pfnhe-1 gene as molecular markers of QNR appeared restricted to endemic areas from South Asia or possibly East African countries and needs to be confirmed.


PLOS ONE | 2015

Novel Cross-Border Approaches to Optimise Identification of Asymptomatic and Artemisinin-Resistant Plasmodium Infection in Mobile Populations Crossing Cambodian Borders

Hannah M. Edwards; Sara E. Canavati; Chandary Rang; Po Ly; Siv Sovannaroth; Lydie Canier; Nimol Khim; Didier Ménard; Ruth A. Ashton; Sylvia Meek; Arantxa Roca-Feltrer

Background Human population movement across country borders presents a real challenge for malaria control and elimination efforts in Cambodia and its neighbouring countries. To quantify Plasmodium infection among the border-crossing population, including asymptomatic and artemisinin resistant (AR) parasites, three official border crossing points, one from each of Cambodias borders with Thailand, Laos and Vietnam, were selected for sampling. Methods and Findings A total of 3206 participants (of 4110 approached) were recruited as they crossed the border, tested for malaria and interviewed. By real-time polymerase chain reaction (RT-PCR), 5.4% of all screened individuals were found to harbour Plasmodium parasites. The proportion was highest at the Laos border (11.5%). Overall there were 97 P. vivax (55.7%), 55 P. falciparum (31.6%), two P. malariae (1.1%) and 20 mixed infections (11.5%). Of identified infections, only 20% were febrile at the time of screening. Of the 24 P. falciparum samples where a further PCR was possible to assess AR, 15 (62.5%) had mutations in the K13 propeller domain gene, all from participants at the Laos border point. Malaria rapid diagnostic test (RDT) pLDH/HRP-2 identified a positivity rate of 3.2% overall and sensitivity compared to RT-PCR was very low (43.1%). Main individual risk factors for infection included sex, fever, being a forest-goer, poor knowledge of malaria prevention methods and previous malaria infection. Occupation, day of the week and time of crossing (morning vs. afternoon) also appeared to play an important role in predicting positive cases. Conclusions This study offers a novel approach to identify asymptomatic infections and monitor AR parasite flow among mobile and migrant populations crossing the borders. Similar screening activities are recommended to identify other hot borders and characterise potential hot spots of AR. Targeted “customised” interventions and surveillance activities should be implemented in these sites to accelerate elimination efforts in the region.


American Journal of Tropical Medicine and Hygiene | 2015

Malaria PCR detection in Cambodian low-transmission settings: dried blood spots versus venous blood samples.

Lydie Canier; Nimol Khim; Saorin Kim; Rotha Eam; Chanra Khean; Kaknika Loch; Malen Ken; Pieter Pannus; Philippe Bosman; Jorgen Stassijns; Fabienne Nackers; SweetC Alipon; Meng Chuor Char; Nguon Chea; William Etienne; Martin De Smet; Jean-Marie Kindermans; Didier Ménard

In the context of malaria elimination, novel strategies for detecting very low malaria parasite densities in asymptomatic individuals are needed. One of the major limitations of the malaria parasite detection methods is the volume of blood samples being analyzed. The objective of the study was to compare the diagnostic accuracy of a malaria polymerase chain reaction assay, from dried blood spots (DBS, 5 μL) and different volumes of venous blood (50 μL, 200 μL, and 1 mL). The limit of detection of the polymerase chain reaction assay, using calibrated Plasmodium falciparum blood dilutions, showed that venous blood samples (50 μL, 200 μL, 1 mL) combined with Qiagen extraction methods gave a similar threshold of 100 parasites/mL, ∼100-fold lower than 5 μL DBS/Instagene method. On a set of 521 field samples, collected in two different transmission areas in northern Cambodia, no significant difference in the proportion of parasite carriers, regardless of the methods used was found. The 5 μL DBS method missed 27% of the samples detected by the 1 mL venous blood method, but most of the missed parasites carriers were infected by Plasmodium vivax (84%). The remaining missed P. falciparum parasite carriers (N = 3) were only detected in high-transmission areas.


American Journal of Tropical Medicine and Hygiene | 2013

Plasmodium falciparum Na+/H+ exchanger (pfnhe-1) genetic polymorphism in Indian Ocean malaria-endemic areas.

Valérie Andriantsoanirina; Nimol Khim; Arsène Ratsimbasoa; Benoit Witkowski; Christophe Benedet; Lydie Canier; Christiane Bouchier; Magali Tichit; Rémy Durand; Didier Ménard

To date, 11 studies conducted in different countries to test the association between Plasmodium falciparum Na(+)/H(+) exchanger gene (pfnhe-1; PF13_0019) polymorphisms and in vitro susceptibility to quinine have generated conflicting data. In this context and to extend our knowledge of the genetic polymorphism of Pfnhe gene, we have sequenced the ms4760 locus from 595 isolates collected in the Comoros (N = 250; an area with a high prevalence of chloroquine and sulfadoxine-pyrimethamine resistance) and Madagascar (N = 345; a low drug-resistance area). Among them, 29 different alleles were observed, including 8 (27%) alleles not previously described. Isolates from the Comoros showed more repeats in block II (DNNND), which some studies have found to be positively associated with in vitro resistance to quinine, compared with isolates from Madagascar. Additional studies are required to better define the mechanisms underlying quinine resistance, which involve multiple gene interactions.

Collaboration


Dive into the Lydie Canier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Somony Heng

Institute of Tropical Medicine Antwerp

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karen Kerkhof

Institute of Tropical Medicine Antwerp

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charlotte Gryseels

Institute of Tropical Medicine Antwerp

View shared research outputs
Top Co-Authors

Avatar

Karel Van Roey

Institute of Tropical Medicine Antwerp

View shared research outputs
Top Co-Authors

Avatar

Koen Peeters Grietens

Institute of Tropical Medicine Antwerp

View shared research outputs
Researchain Logo
Decentralizing Knowledge