Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lydie Guigand is active.

Publication


Featured researches published by Lydie Guigand.


Journal of Clinical Investigation | 2010

Chikungunya disease in nonhuman primates involves long-term viral persistence in macrophages

Karine Labadie; Thibaut Larcher; Christophe Joubert; Abdelkrim Mannioui; Benoit Delache; Patricia Brochard; Lydie Guigand; Laurence Dubreil; Pierre Lebon; Bernard Verrier; Xavier de Lamballerie; Andreas Suhrbier; Yan Cherel; Roger Le Grand; Pierre Roques

Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that induces in humans a disease characterized by fever, rash, and pain in muscles and joints. The recent emergence or reemergence of CHIKV in the Indian Ocean Islands and India has stressed the need to better understand the pathogenesis of this disease. Previous CHIKV disease models have used young or immunodeficient mice, but these do not recapitulate human disease patterns and are unsuitable for testing immune-based therapies. Herein, we describe what we believe to be a new model for CHIKV infection in adult, immunocompetent cynomolgus macaques. CHIKV infection in these animals recapitulated the viral, clinical, and pathological features observed in human disease. In the macaques, long-term CHIKV infection was observed in joints, muscles, lymphoid organs, and liver, which could explain the long-lasting CHIKV disease symptoms observed in humans. In addition, the study identified macrophages as the main cellular reservoirs during the late stages of CHIKV infection in vivo. This model of CHIKV physiopathology should allow the development of new therapeutic and/or prophylactic strategies.


American Journal of Physiology-cell Physiology | 2010

Differential effects of hypoxia on osteochondrogenic potential of human adipose-derived stem cells

Christophe Merceron; Claire Vinatier; Sophie Portron; Martial Masson; Jérôme Amiaud; Lydie Guigand; Yan Cherel; Pierre Weiss; Jérôme Guicheux

Human adipose tissue-derived stem cells (hATSC) have been contemplated as reparative cells for cartilage engineering. Chondrogenic differentiation of hATSC can be induced by an enriched culture medium and a three-dimensional environment. Given that bone is vascularized and cartilage is not, oxygen tension has been suggested as a regulatory factor for osteochondrogenic differentiation. Our work aimed at determining whether hypoxia affects the osteochondrogenic potential of hATSC. hATSC were cultured in chondrogenic or osteogenic medium for 28 days, in pellets or monolayers, and under 5% or 20% oxygen tension. Cell differentiation was monitored by real-time PCR (COL2A1, aggrecan, Runx2, and osteocalcin). The chondrogenic differentiation was further evaluated by Alcian blue and immunohistological staining for glycosaminoglycans (GAGs) and type II collagen, respectively. Osteogenic differentiation was also assessed by the staining of mineralized matrix (Alizarin Red) and measurement of alkaline phosphatase (ALP) activity. The expression of chondrogenic markers was upregulated when hATSC were exposed to hypoxia in chondrogenic medium. Conversely, osteocalcin expression, mineralization, and ALP activity were severely reduced under hypoxic conditions even in the presence of osteogenic medium. Our data strongly suggest that hypoxia favors the chondrogenic differentiation of hATSC as evidenced by the expression of the chondrogenic markers, whereas it could alter their osteogenic potential. Our results highlight the differential regulatory role of hypoxia on the chondrogenic and osteogenic differentiation processes of hATSC. These data could help us exploit the potential of tissue engineering and stem cells to replace or restore the function of osteoarticular tissues.


Molecular Therapy | 2008

Safety and Efficacy of Regional Intravenous (RI) Versus Intramuscular (IM) Delivery of rAAV1 and rAAV8 to Nonhuman Primate Skeletal Muscle

Alice Toromanoff; Yan Cherel; Mickaël Guilbaud; Magalie Penaud-Budloo; Richard O. Snyder; Mark E. Haskins; Jack-Yves Deschamps; Lydie Guigand; Guillaume Podevin; Valder R. Arruda; Katherine A. High; Hansell H. Stedman; Fabienne Rolling; Ignacio Anegon; Philippe Moullier; Caroline Le Guiner

We developed a drug-free regional intravenous (RI) delivery protocol of recombinant adeno-associated virus (rAAV) 1 and 8 to an entire limb in the nonhuman primate (NHP), and compared the results with those produced by intramuscular (IM) delivery of the same dose of vector. We show that RI delivery of both serotypes was remarkably well tolerated with no adverse side-effects. After IM, muscle transduction was restricted to the site of injection with a high number of vector copies per cell for rAAV1. In contrast, although RI delivery resulted in a lower vector copy per cell, it was detectable in the vast majority of muscles of the injected limb. The amounts of circulating infectious rAAV were similar for both serotypes and modes of delivery. At autopsy at up to 34 months after vector administration, similar biodistribution patterns were found for both vectors and for both modes of delivery, with numerous organs found to be positive for vector sequence when assayed using PCR and Southern blot. Altogether, we demonstrated that RI is a simple and efficient transduction protocol in NHPs, resulting in higher expression of the transgene with a lower number of vector genomes per cell. However, regardless of the mode of delivery, concerns continue to be raised by the presence of vector sequences detected at distant sites.We developed a drug-free regional intravenous (r.i.) delivery protocol of recombinant adeno-associated virus (rAAV) 1 and 8 to an entire limb in the nonhuman primate (NHP), and compared the results with those produced by intramuscular (i.m.) delivery of the same dose of vector. We show that r.i. delivery of both serotypes was remarkably well tolerated with no adverse side-effects. After i.m., muscle transduction was restricted to the site of injection with a high number of vector copies per cell for rAAV1. In contrast, although r.i. delivery resulted in a lower vector copy per cell, it was detectable in the vast majority of muscles of the injected limb. The amounts of circulating infectious rAAV were similar for both serotypes and modes of delivery. At autopsy at up to 34 months after vector administration, similar biodistribution patterns were found for both vectors and for both modes of delivery, with numerous organs found to be positive for vector sequence when assayed using PCR and Southern blot. Altogether, we demonstrated that r.i. is a simple and efficient transduction protocol in NHPs, resulting in higher expression of the transgene with a lower number of vector genomes per cell. However, regardless of the mode of delivery, concerns continue to be raised by the presence of vector sequences detected at distant sites.


Molecular Therapy | 2014

Forelimb Treatment in a Large Cohort of Dystrophic Dogs Supports Delivery of a Recombinant AAV for Exon Skipping in Duchenne Patients

Caroline Le Guiner; Marie Montus; L. Servais; Yan Cherel; Virginie François; J.L. Thibaud; Claire Wary; B. Matot; Thibaut Larcher; Lydie Guigand; Maeva Dutilleul; Claire Domenger; Marine Allais; Maud Beuvin; A. Moraux; Johanne Le Duff; Marie Devaux; Nicolas Jaulin; Mickaël Guilbaud; Virginie Latournerie; Philippe Veron; Sylvie Boutin; Christian Leborgne; Diana Desgue; Jack-Yves Deschamps; Sophie Moullec; Yves Fromes; Adeline Vulin; Richard J.H. Smith; Nicolas Laroudie

Duchenne muscular dystrophy (DMD) is a severe muscle-wasting disorder caused by mutations in the dystrophin gene, without curative treatment yet available. Our study provides, for the first time, the overall safety profile and therapeutic dose of a recombinant adeno-associated virus vector, serotype 8 (rAAV8) carrying a modified U7snRNA sequence promoting exon skipping to restore a functional in-frame dystrophin transcript, and injected by locoregional transvenous perfusion of the forelimb. Eighteen Golden Retriever Muscular Dystrophy (GRMD) dogs were exposed to increasing doses of GMP-manufactured vector. Treatment was well tolerated in all, and no acute nor delayed adverse effect, including systemic and immune toxicity was detected. There was a dose relationship for the amount of exon skipping with up to 80% of myofibers expressing dystrophin at the highest dose. Similarly, histological, nuclear magnetic resonance pathological indices and strength improvement responded in a dose-dependent manner. The systematic comparison of effects using different independent methods, allowed to define a minimum threshold of dystrophin expressing fibers (>33% for structural measures and >40% for strength) under which there was no clear-cut therapeutic effect. Altogether, these results support the concept of a phase 1/2 trial of locoregional delivery into upper limbs of nonambulatory DMD patients.


American Journal of Pathology | 2011

Systemic Delivery of Allogenic Muscle Stem Cells Induces Long-Term Muscle Repair and Clinical Efficacy in Duchenne Muscular Dystrophy Dogs

Karl Rouger; Thibaut Larcher; Laurence Dubreil; Jack-Yves Deschamps; Caroline Le Guiner; Grégory Jouvion; Bruno Delorme; Blandine Lieubeau; Marine Carlus; Benoît Fornasari; Marine Theret; Priscilla Orlando; Mireille Ledevin; Céline Zuber; Isabelle Leroux; Stéphane Deleau; Lydie Guigand; Isabelle Testault; Elisabeth Le Rumeur; Marc Fiszman; Yan Cherel

Duchenne muscular dystrophy (DMD) is a genetic progressive muscle disease resulting from the lack of dystrophin and without effective treatment. Adult stem cell populations have given new impetus to cell-based therapy of neuromuscular diseases. One of them, muscle-derived stem cells, isolated based on delayed adhesion properties, contributes to injured muscle repair. However, these data were collected in dystrophic mice that exhibit a relatively mild tissue phenotype and clinical features of DMD patients. Here, we characterized canine delayed adherent stem cells and investigated the efficacy of their systemic delivery in the clinically relevant DMD animal model to assess potential therapeutic application in humans. Delayed adherent stem cells, named MuStem cells (muscle stem cells), were isolated from healthy dog muscle using a preplating technique. In vitro, MuStem cells displayed a large expansion capacity, an ability to proliferate in suspension, and a multilineage differentiation potential. Phenotypically, they corresponded to early myogenic progenitors and uncommitted cells. When injected in immunosuppressed dystrophic dogs, they contributed to myofiber regeneration, satellite cell replenishment, and dystrophin expression. Importantly, their systemic delivery resulted in long-term dystrophin expression, muscle damage course limitation with an increased regeneration activity and an interstitial expansion restriction, and persisting stabilization of the dogs clinical status. These results demonstrate that MuStem cells could provide an attractive therapeutic avenue for DMD patients.


Cell and Tissue Research | 2004

Muscle satellite cell heterogeneity: in vitro and in vivo evidences for populations that fuse differently

Karl Rouger; Mickael Brault; Nathalie Daval; Isabelle Leroux; Lydie Guigand; Julie Lesoeur; Bernard Fernandez; Yan Cherel

During development, muscle growth results from the proliferation of satellite cells (SC) and their fusion with fibers. Several studies revealed heterogeneity of SC population notably based on the proliferation rate. Here, we examined the SC characteristics of turkey skeletal muscles in terms of proliferation and more specifically fusion, to define if the ability of these cells to fuse may represent a distinct characteristic between them and could be directly associated with their proliferation properties. Freshly extracted SC were plated in clonal condition and their proliferation rate was assessed 11 days later. To investigate the SC fusion behavior, in vitro and in vivo approaches were developed. Highly and slowly proliferative SC were initially labeled with a nuclear β-galactosidase (β-Gal) activity and co-cultured with differentiated primary cultures. After 5 days, distribution of β-Gal positive (β-Gal+) nuclei was examined. Also, the two labeled SC types were transplanted into different muscles in autologous model. One week later, number of β-Gal+ nuclei per fiber and diameter of fibers displaying β-Gal+ nuclei were determined. In vitro, we showed that SC from turkey skeletal muscle are present as a heterogeneous population in terms of proliferation. Examination of their fusion properties in vitro as well as in vivo revealed that highly proliferative SC exclusively exhibited fusion with differentiated myotubes or myofibers, whereas slowly proliferative SC mainly fused together. Collectively, these data demonstrate for the first time that SC with different proliferation rate also intrinsically differ in their fusion potential, suggesting distinct roles for these sub-populations in muscle growth.


Molecular Therapy | 2010

Lack of Immunotoxicity After Regional Intravenous (RI) Delivery of rAAV to Nonhuman Primate Skeletal Muscle

Alice Toromanoff; Oumeya Adjali; Thibaut Larcher; Marcelo Hill; Lydie Guigand; Pierre Chenuaud; Jack-Yves Deschamps; Olivier Gauthier; Gilles Blancho; Bernard Vanhove; Fabienne Rolling; Yan Cherel; Philippe Moullier; Ignacio Anegon; Caroline Le Guiner

In the absence of an immune response from the host, intramuscular (IM) injection of recombinant adeno-associated virus (rAAV) results in the permanent expression of the transgene from mouse to primate models. However, recent gene transfer studies into animal models and humans indicate that the risk of transgene and/or capsid-specific immune responses occurs and depends on multiple factors. Among these factors, the route of delivery is important, although poorly addressed in large animal models. Here, we compare the IM and the drug-free regional intravenous (RI) deliveries of rAAV in nonhuman primate (NHP) skeletal muscle monitoring the host immune response toward the transgene. We show that IM is consistently associated with immunotoxicity and the destruction of the genetically modified myofibers, whereas RI allows the stable expression of the transgene. This has important implications for the design of clinical trials for gene transfer in skeletal muscle.


Avian Pathology | 2001

Pigeon circovirus infection: Pathological observations and suggested pathogenesis

J. Abadie; F. Nguyen; Caroline Groizeleau; Nadia Amenna; Bernard Fernandez; Catherine Guereaud; Lydie Guigand; Philippe Robart; Bernard Lefebvre; Monique Wyers

Pigeon circovirus infection (PiCV) was diagnosed by light and transmission electron microscopy in 15 birds from five lofts in western France. Histopathological findings were suggestive of primary bursotropism of pigeon circovirus, followed by secondary systemic spread from the bursa of Fabricius, particularly to non-bursal lymphoid organs. The last stage of the disease was associated with various secondary (particularly bacterial) infections. In situ detection of apoptosis in the bursa of Fabricius indicated that PiCV was concomitant with an increase in bursal lymphocytic apoptotic events related to viral infection and leading to severe acquired immunosuppression.


Virus Research | 2011

A novel chicken lung epithelial cell line: Characterization and response to low pathogenicity avian influenza virus

Evelyne Esnault; Claire Bonsergent; Thibaut Larcher; Bertrand Bed’Hom; Jean-François Vautherot; Bernadette Delaleu; Lydie Guigand; Denis Soubieux; Daniel Marc; Pascale Quéré

Avian influenza virus (AIV) infections of the chicken occur via the respiratory route. Unlike ducks which are considered as a natural AIV reservoir, chickens are highly susceptible to AIV infections and do not possess the RIG-I pattern recognition receptor involved in triggering the antiviral interferon response. To study the chicken innate immune response to AIV in the respiratory tract, we established an epithelial cell line (CLEC213) from lung explants of white leghorn chickens. CLEC213 cells exhibited a polyhedral morphology and formed cohesive clusters bound through tight junctions as assessed by electron microscopy. Expression of E-cadherin but not vimentin could be detected as expected for cells of epithelial origin. In addition, CLEC213 cells showed characteristics similar to those of mammalian type II pneumocytes, including the presence of intracytoplasmic vacuoles filled with a mucopolysaccharide material, alkaline phosphatase activity, transcription of chicken lung collectins genes (cLL and SPA), and some intracytoplasmic lamellar-like bodies. CLEC213 cells showed a constitutive expression level of TLR3 and TLR4 and were responsive to stimulation with the respective agonists, poly (I:C) and LPS: between 4h and 24h after treatment, a strong increase in the expression of IFN-α, IFN-β and IL-8 genes could be detected. Furthermore, CLEC213 cells supported efficient growth of the low pathogenicity avian influenza virus H6N2 (A/duck/France/05057a/2005) in the presence or the absence of trypsin in the culture media. At 4h post-infection, the H6N2 virus induced highly elevated levels of expression of IFN-α and IL-8, moderately elevated levels of LITAF, TGF-β4 and CCL5. However, an increase of IFN-β gene expression could not be detected in response to AIV infection. In conclusion, like mammalian type II pneumocytes, CLEC213 are able to mount a robust cytokine and chemokine immune response to microbial patterns and viral infection. We hypothesize that they could derive from lung atrial granular cells. The involvement of such type of lung epithelial cells in the respiratory tract defence of the chicken can thus be further studied.


Neuromuscular Disorders | 2005

Microvessel density in muscles of dogs with golden retriever muscular dystrophy

F. Nguyen; Lydie Guigand; Isabelle Goubault-Leroux; Monique Wyers; Yan Cherel

Due to the abundance of muscle, intravascular administration seems required for efficient gene or cell therapy of muscular dystrophy. Here, we examined the skeletal muscle microvasculature to assess if it is altered with dystrophin deficiency. Image analysis of capillaries was performed in three muscles of one- to ten-month-old golden retriever muscular dystrophy (GRMD) dogs and compared with healthy controls. In the gracilis muscle (and in the biceps brachii muscle) of 4- to 10-month-old GRMD dogs, the microvessel density (445+/-47 microvessels per mm(2)), the capillary to fiber ratio (111+/-26 capillaries per 100 myofibers), and the mean intercapillary distance (49+/-3 microm), were similar in affected and control dogs. The sartorius cranialis muscle in GRMD dogs showed microvessel depletion and increased intercapillary distance, but unaltered capillary to fiber ratio, relative to the controls. The mean diameter of microvessels and the total vascular area were higher in GRMD muscles than in control ones. In severely affected GRMD muscles at 7-10 months of age, fibrosis was associated with decreased microvessel density, increased intercapillary distance and microvessel diameter, but normal capillary to fiber ratio and total vascular area.

Collaboration


Dive into the Lydie Guigand's collaboration.

Top Co-Authors

Avatar

Yan Cherel

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Thibaut Larcher

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Monique Wyers

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bernard Fernandez

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar

F. Nguyen

École Normale Supérieure

View shared research outputs
Researchain Logo
Decentralizing Knowledge