Lydie Jeandel
University of Rouen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lydie Jeandel.
Neuroscience | 1993
M. Basille; Bruno J. Gonzalez; Philippe Leroux; Lydie Jeandel; Alain Fournier; H. Vaudry
Pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptors are abundant in the brain and particularly in the cerebellum of adult rats. In contrast, the occurrence of PACAP binding sites has not been investigated during ontogenesis. The aim of the present study was to determine the distribution and biochemical characteristics of PACAP binding sites in the rat cerebellum during postnatal development, and to examine the effect of PACAP on immature cerebellar granule cells. Autoradiographic studies revealed that PACAP binding sites are transiently expressed in a germinative matrix of the cerebellar cortex, the external granule cell layer, and in the medulla, from postnatal days 8 to 25. A population of PACAP binding sites persisted in the internal granule cell layer in the mature cerebellum. Emulsion-coated cytoautoradiography, performed on cultured immature granule cells from eight-day-old rat cerebellum, demonstrated that transient PACAP binding sites are expressed by cerebellar immature granule cells. Biochemical characterization of binding revealed the occurrence of two classes of PACAP recognition sites exhibiting, respectively, high (Kd = 0.39 +/- 0.08 nM) and low (Kd = 21.2 +/- 9.4 nM) affinity for PACAP27. The two naturally occurring forms PACAP38 and PACAP27 were equipotent in competing for [125I]PACAP27 binding. In contrast, the [Des-His1]PACAP38 analog was eight times less efficient and vasoactive intestinal polypeptide only induced weak displacement of the binding. Exposure of cultured immature granule cells to PACAP27 resulted in a dose-dependent stimulation of the production of cAMP, indicating that PACAP binding sites represent authentic receptors positively coupled to adenylate cyclase. These results show that PACAP receptors are actively expressed in the cerebellum of rats during postnatal development. The presence of functional PACAP receptors in the external granule cell layer suggests that PACAP may play a role in the control of proliferation and/or differentiation of granule cells.
Endocrinology | 2009
Benoît Lectez; Lydie Jeandel; Fatima-Zohra El-Yamani; Sébastien Arthaud; David Alexandre; Aurélie Mardargent; Sylvie Jégou; Lourdes Mounien; Patrice Bizet; Rabia Magoul; Youssef Anouar; Nicolas Chartrel
26RFa is a hypothalamic RFamide neuropeptide that was identified as the endogenous ligand of the orphan G protein-coupled receptor, GPR103, and that stimulates appetite in mice. Up until now, the mechanism of action of 26RFa in the hypothalamic control of food intake remains unknown. The high density of GPR103 in the arcuate nucleus (Arc) prompted us to investigate, in the present study, the effects of 26RFa on the rat neuropeptide Y (NPY)/proopiomelanocortin (POMC) system. Intracerebroventricular injection of 26RFa stimulated NPY expression and release in the basal hypothalamus, whereas it decreased POMC expression and alpha-MSH release, and these effects were associated with an increase in food intake. A double in situ hybridization procedure indicated that the 26RFa receptor is present in NPY neurons of the Arc, but not in POMC neurons. Central administration of NPY Y1 and Y5 receptor antagonists abolished the inhibitory effects of 26RFa on POMC expression and alpha-MSH release, and reversed 26RFa-induced food consumption. Finally, 26RFa antagonized the effects of leptin on NPY expression and release, POMC expression and alpha-MSH release, and food intake. Altogether, the present data demonstrate for the first time that 26RFa exerts its orexigenic activity by stimulating the release of NPY in the Arc, which in turn inhibits POMC neurons by activating the Y1 and Y5 receptors. It is also suggested that the balance 26RFa/leptin is an important parameter in the maintenance of energy homeostasis.
Frontiers in Neuroendocrinology | 2011
Nicolas Chartrel; Jessy Alonzeau; David Alexandre; Lydie Jeandel; Rodrigo Alvear-Perez; Jérôme Leprince; Jean Boutin; Hubert Vaudry; Youssef Anouar; Catherine Llorens-Cortes
Identification of novel neuropeptides and their cognate G protein-coupled receptors is essential for a better understanding of neuroendocrine regulations. The RFamide peptides represent a family of regulatory peptides that all possess the Arg-Phe-NH2 motif at their C-terminus. In mammals, seven RFamide peptides encoded by five distinct genes have been characterized. The present review focuses on 26RFa (or QRFP) which is the latest member identified in this family. 26RFa is present in all vertebrate phyla and its C-terminal domain (KGGFXFRF-NH2), which is responsible for its biological activity, has been fully conserved during evolution. 26RFa is the cognate ligand of the orphan G protein-coupled receptor GPR103 that is also present from fish to human. In all vertebrate species studied so far, 26RFa-expressing neurons show a discrete localization in the hypothalamus, suggesting important neuroendocrine activities for this RFamide peptide. Indeed, 26RFa plays a crucial role in the control of feeding behavior in mammals, birds and fish. In addition, 26RFa up-regulates the gonadotropic axis in mammals and fish. Finally, evidence that the 26RFa/GPR103 system regulates steroidogenesis, bone formation, nociceptive transmission and arterial blood pressure has also been reported. Thus, 26RFa appears to act as a key neuropeptide in vertebrates controlling vital neuroendocrine functions. The pathophysiological implication of the 26RFa/GPR103 system in human is totally unknown and some fields of investigation are proposed.
Journal of Neuroendocrinology | 1993
Laurent Yon; Lydie Jeandel; Nicolas Chartrel; Marc Feuilloley; J. Michael Conlon; Akira Arimura; Alain Fournier; Hubert Vaudry
Pituitary adenylate cyclase‐activating polypeptide (PACAP) is a 38 amino‐acid peptide which belongs to the glucagon/secretin/ vasoactive intestinal peptide superfamily. The sequence of PACAP is identical in all mammalian species studied so far but frog PACAP differs by one amino‐acid from mammalian PACAP. The aim of the present study was to investigate the presence of PACAP in the hypothalamo‐pituitary complex of the frog Rana ridibunda and to determine the biological activity of frog PACAP on homologous pituitary cells. The distribution of PACAP‐containing neurons and fibers was examined by the indirect immunofluores‐cence method using an antiserum raised against the N‐terminal region of the peptide. In the hypothalamus, PACAP‐immunoreactive perikarya were localized in the preoptic nucleus and the dorsal and ventral infundibular nuclei. Beaded nerve fibers were observed coursing from the ventral infundibular nucleus to the external vascular layer of the median eminence. A dense network of immunoreactive axons terminated in the vicinity of the capillaries of the hypophysial portal system. The neurointermediate lobe and the distal lobe of the pituitary were devoid of immunoreactive elements. The amount of PACAP‐like immunoreactive material in hypothalamus extracts was measured by radioimmunoassay; the apparent concentration of PACAP was 4.5 ng/mg protein. Synthetic frog PACAP38 and PACAP27 induced a similar dose‐dependent stimulation of cAMP production in isolated frog distal lobe pituitary fragments (ED50= 2 × 10−8 M). At the maximum dose tested (5 × 10−6 M), both frog PACAP38 and PACAP27 produced a 4‐fold increase in cAMP production. In contrast, the truncated form [Des‐His1frog PACAP38 did not affect adenylate cyclase activity demonstrating therefore that the N‐terminal histidyl residue is essential for the biological activity of the peptide. [Des‐His1]frog PACAP38 did not antagonize the stimulatory effect of frog PACAP38 or PACAP27 on cAMP production. Taken together, these data support the concept that, in amphibians as in mammals, PACAP may act as a hypophysiotropic neuropeptide.
American Journal of Physiology-endocrinology and Metabolism | 2011
Annabelle Reaux-Le Goazigo; Laurence Bodineau; Nadia Picco-De Mota; Lydie Jeandel; Nicolas Chartrel; Claude Knauf; Carine Raad; Philippe Valet; Catherine Llorens-Cortes
Neuronal networks originating in the hypothalamic arcuate nucleus (Arc) play a fundamental role in controlling energy balance. In the Arc, neuropeptide Y (NPY)-producing neurons stimulate food intake, whereas neurons releasing the proopiomelanocortin (POMC)-derived peptide α-melanocyte-stimulating hormone (α-MSH) strongly decrease food intake. There is growing evidence to suggest that apelin and its receptor may play a role in the central control of food intake, and both are concentrated in the Arc. We investigated the presence of apelin and its receptor in Arc NPY- and POMC-containing neurons and the effects of apelin on α-MSH release in the hypothalamus. We showed, by immunofluorescence and confocal microscopy, that apelin-immunoreactive (IR) neuronal cell bodies were distributed throughout the rostrocaudal extent of the Arc and that apelin was strongly colocalized with POMC, but weakly colocalized with NPY. However, there were numerous NPY-IR nerve fibers close to the apelin-IR neuronal cell bodies. By combining in situ hybridization with immunohistochemistry, we demonstrated the presence of apelin receptor mRNA in Arc POMC neurons. Moreover, using a perifusion technique for hypothalamic explants, we demonstrated that apelin-17 (K17F) increased α-MSH release, suggesting that apelin released somato-dendritically or axonally from POMC neurons may stimulate α-MSH release in an autocrine manner. Consistent with these data, hypothalamic apelin levels were found to be higher in obese db/db mice and fa/fa Zucker rats than in wild-type animals. These findings support the hypothesis that central apelin is involved in regulating body weight and feeding behavior through the direct stimulation of α-MSH release.
The Journal of Clinical Endocrinology and Metabolism | 2012
Bogdan Galusca; Lydie Jeandel; Natacha Germain; David Alexandre; Jérôme Leprince; Youssef Anouar; Bruno Estour; Nicolas Chartrel
CONTEXT Restrictive anorexia nervosa (AN) presents an adaptive appetite regulating profile including mainly high levels of ghrelin. Because this adaptive mechanism is not effective on food intake, other appetite-regulating peptides need to be explored. 26RFa is a hypothalamic neuropeptide that stimulates appetite, gonadotropin release, and bone metabolism. OBJECTIVE The objective of the study was to evaluate the circadian levels of 26RFa in AN patients compared with healthy subjects, other eating disorders, and constitutional thinness (CT). DESIGN AND SETTINGS This was a cross-sectional study performed in an endocrine unit and an academic laboratory. INVESTIGATED SUBJECTS Five groups of age-matched young women were included in the study: 19 restrictive AN, 10 AN with bingeing/purging episodes, 14 with CT, 10 bulimic, and 10 normal-weight controls. MAIN OUTCOME MEASURES Twelve-point circadian profiles of plasma 26RFa levels were measured in each subject. RESULTS Significant circadian variations of 26 RFA were noticed in controls with higher values in the morning and abrupt decrease at noon. Twenty-four-hour mean 26RFa levels were significantly increased in restrictive AN and AN with bingeing/purging episodes (P < 0.001), predominantly in the afternoon and evening when compared with controls. Preprandial rises of 26 RFA were noticed in AN patients. Mean 26RFa levels trend to be higher in CT than in controls (P = 0.06) and significantly lower than in AN. The bulimic patients presented a circadian profile of 26RFa similar to that of controls. CONCLUSION High levels of circulating 26RFa observed in AN patients might reflect an adaptive mechanism of the organism to promote energy intake and to increase fat stores in response to undernutrition.
European Journal of Cancer | 2014
David Alexandre; Coralie Hautot; Marwa Mehio; Lydie Jeandel; Maïté Courel; Thierry Voisin; Alain Couvineau; Françoise Gobet; Jérôme Leprince; Christian Pfister; Youssef Anouar; Nicolas Chartrel
AIM In the present study, we have examined the presence of orexins and their receptors in prostate cancer (CaP) and investigated their effects on the apoptosis of prostate cancer cells. METHODS We have localised the orexin type 1 and 2 receptors (OX1R and OX2R) and orexin A (OxA) in CaP sections of various grades and we have quantified tumour cells containing OX1R. Expression of OX1R was evaluated in the androgeno-dependent (AD) LNCaP and the androgeno-independent (AI) DU145 prostate cancer cells submitted or not to a neuroendocrine differentiation. The effects of orexins on the apoptosis and viability of DU145 cells were also investigated. RESULTS OX1R is strongly expressed in carcinomatous foci exhibiting a neuroendocrine differentiation, and the number of OX1R-stained cancer cells increases with the grade of the CaP. In contrast, OX2R is only detected in scattered malignant cells in high grade CaP. OX1R is expressed in the AI DU145 cells but is undetectable in the LNCaP cells. Acquisition of a neuroendocrine phenotype by the DU145 cells is associated with an overexpression of OX1R. Orexins induce the apoptosis of DU145 cells submitted to a neuroendocrine differentiation. CONCLUSION The present data indicate that OX1R-driven apoptosis is overexpressed in AI CaP exhibiting a neuroendocrine differentiation opening a gate for novel therapies for these aggressive cancers which are incurable until now.
The Journal of Comparative Neurology | 1999
Lydie Jeandel; Laurent Yon; Nicolas Chartrel; Bruno J. Gonzalez; Alain Fournier; J. Michael Conlon; Hubert Vaudry
The biochemical characteristics and the distribution of pituitary adenylate cyclase–activating polypeptide (PACAP) binding sites have been investigated in the brain of the frog Rana ridibunda by using [125I]PACAP27 as a radioligand. Membrane‐binding studies revealed the existence of high‐affinity receptors for frog PACAP38 and PACAP27. In contrast, the [Des‐His1]PACAP38 analogue had a much lower affinity and vasoactive intestinal polypeptide did not produce any displacement of the binding. Autoradiographic labeling of frozen brain sections revealed that the highest concentrations of PACAP receptors were located in the olfactory bulb, pallium, striatum, habenular nuclei, ventromedial thalamic nucleus, corpus geniculatum, posterior tubercle, dorsal part of the magnocellular preoptic nucleus, tectum, and the molecular cell layer of the cerebellum. Moderate binding was observed in the septum, in most parts of the thalamus, the dorsal hypothalamic nucleus, the median eminence, the ventral nuclei of the tegmentum, the torus semicircularis, and the interpeduncular and isthmi nuclei. The present data provide the first biochemical characterization and anatomic distribution of PACAP binding sites in the brain of a nonmammalian vertebrate species. The widespread distribution of specific PACAP receptors in the frog brain suggests that the peptide does not act solely as a hypophysiotropic factor, but likely fulfills neurotransmitter functions, neuromodulator functions, or both. J. Comp. Neurol. 412:218–228, 1999.
European Journal of Cancer | 2013
Jessy Alonzeau; David Alexandre; Lydie Jeandel; Maïté Courel; Coralie Hautot; Fatima-Zohra El Yamani; Françoise Gobet; Jérôme Leprince; Rabia Magoul; Afaf Amarti; Christian Pfister; Laurent Yon; Youssef Anouar; Nicolas Chartrel
AIM Accumulating data suggest that neuropeptides produced by neuroendocrine cells play a crucial role in the progression and aggressiveness of hormone refractory prostate cancer (CaP). In this study, we have investigated the presence and function of the neuropeptide 26RFa in CaP. METHODS We have localised and quantified tumour cells containing 26RFa and its receptor, GPR103, in CaP sections of various grades. In vitro experiments were performed to investigate the effects of 26RFa on the migration, proliferation and neuroendocrine differentiation of the androgeno-independent (AI) prostate cancer cell line DU145. RESULTS 26RFa and GPR103 are present in carcinomatous foci exhibiting a neuroendocrine differentiation, and the number of 26RFa and GPR103-immunoreactive cancer cells increases with the grade of CaP. 26RFa stimulated the migration of native or transdifferentiated AI DU145 cells, but had no effect on their proliferation. Furthermore, 26RFa induced the neuroendocrine differentiation of DU145 cells as assessed by the occurrence of neurite-like extensions and the increase of the expression of the neuroendocrine marker chromogranin A. CONCLUSION The present data indicate that 26RFa may participate to the development of CaP at the AI state by promoting the neuroendocrine differentiation and the migration of cancer cells via autocrine/paracrine mechanisms.
Journal of Neurochemistry | 2016
Emeline Tanguy; Ophélie Carmon; Qili Wang; Lydie Jeandel; Sylvette Chasserot-Golaz; Maité Montero-Hadjadje; Nicolas Vitale
The regulated secretory pathway begins with the formation of secretory granules by budding from the Golgi apparatus and ends by their fusion with the plasma membrane leading to the release of their content into the extracellular space, generally following a rise in cytosolic calcium. Generation of these membrane‐bound transport carriers can be classified into three steps: (i) cargo sorting that segregates the cargo from resident proteins of the Golgi apparatus, (ii) membrane budding that encloses the cargo and depends on the creation of appropriate membrane curvature, and (iii) membrane fission events allowing the nascent carrier to separate from the donor membrane. These secretory vesicles then mature as they are actively transported along microtubules toward the cortical actin network at the cell periphery. The final stage known as regulated exocytosis involves the docking and the priming of the mature granules, necessary for merging of vesicular and plasma membranes, and the subsequent partial or total release of the secretory vesicle content. Here, we review the latest evidence detailing the functional roles played by lipids during secretory granule biogenesis, recruitment, and exocytosis steps.