Lydie Sparfel
University of Rennes
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lydie Sparfel.
Journal of Immunology | 2002
Béatrice Laupeze; Laurence Amiot; Lydie Sparfel; Eric Le Ferrec; Renée Fauchet; Olivier Fardel
Polycyclic aromatic hydrocarbons (PAHs) such as benzo(a)pyrene (BP) are environmental carcinogens exhibiting potent immunosuppressive properties. To determine the cellular bases of this immunotoxicity, we have studied the effects of PAHs on differentiation, maturation, and function of monocyte-derived dendritic cells (DC). Exposure to BP during monocyte differentiation into DC upon the action of GM-CSF and IL-4 markedly inhibited the up-regulation of markers found in DC such as CD1a, CD80, and CD40, without altering cell viability. Besides BP, PAHs such as dimethylbenz(a)anthracene and benzanthracene also strongly altered CD1a levels. Moreover, DC generated in the presence of BP displayed decreased endocytic activity. Features of LPS-mediated maturation of DC, such as CD83 up-regulation and IL-12 secretion, were also impaired in response to BP treatment. BP-exposed DC poorly stimulated T cell proliferation in mixed leukocyte reactions compared with their untreated counterparts. In contrast to BP, the halogenated arylhydrocarbon 2,3,7,8-tetrachlorodibenzo-p-dioxin, which shares some features with PAHs, including interaction with the arylhydrocarbon receptor, failed to phenotypically alter differentiation of monocytes into DC, suggesting that binding to the arylhydrocarbon receptor cannot mimic PAH effects on DC. Overall, these data demonstrate that exposure to PAHs inhibits in vitro functional differentiation and maturation of blood monocyte-derived DC. Such an effect may contribute to the immunotoxicity of these environmental contaminants due to the major role that DC play as potent APC in the development of the immune response.
Toxicology Letters | 2008
Normand Podechard; Valérie Lecureur; Eric Le Ferrec; Isabelle Guenon; Lydie Sparfel; David Gilot; John Gordon; Vincent Lagente; Olivier Fardel
Benzo(a)pyrene (BP) is an environmental contaminant known to favor airway inflammation likely through up-regulation of pro-inflammatory cytokines. The present study was designed to characterize its effects toward interleukin-8 (IL-8), a well-established pulmonary inflammatory cytokine. In primary human macrophages, BP was shown to induce IL-8 expression at both mRNA and secretion levels in a dose-dependent manner. Such an up-regulation was likely linked to aryl hydrocarbon receptor (AhR)-activation since BP-mediated IL-8 induction was reduced after AhR expression knock-down through RNA interference. Moreover, electrophoretic mobility shift assays (EMSAs) and chromatin immunoprecipitation experiments showed BP-triggered binding of AhR to a consensus xenobiotic responsive element (XRE) found in the human IL-8 promoter. Finally, BP administration to mice led to over-expression of keratinocyte chemoattractant (KC), the murine functional homologue of IL-8, in lung. It also triggered the recruitment of neutrophils in bronchoalveolar lavage (BAL) fluids, which was however fully abolished in the presence of a chemical antagonist of the KC/IL-8 receptors CXCR1/CXCR2, thus supporting the functional and crucial involvement of KC in BP-induced lung inflammation. Overall, these data highlight an AhR-dependent regulation of IL-8 in response to BP that likely contributes to the airway inflammatory effects of this environmental chemical.
Toxicological Sciences | 2010
Lydie Sparfel; Marie-Laure Pinel-Marie; Magali Boize; Serge Koscielny; Sophie Desmots; Alexandre R.R. Péry; Olivier Fardel
Polycyclic aromatic hydrocarbons (PAHs) are widely distributed immunotoxic and carcinogenic environmental contaminants, known to affect macrophages. In order to identify their molecular targets in such cells, we have analyzed gene expression profile of primary human macrophages treated by the prototypical PAH benzo(a)pyrene (BaP), using pangenomic oligonucleotides microarrays. Exposure of macrophages to BaP for 8 and 24 h resulted in 96 and 1100 genes, differentially expressed by at least a twofold change factor, respectively. Some of these targets, including the chemokine receptor CXCR5, the G protein-coupled receptor 35 (GPR35), and the Ras regulator RASAL1, have not been previously shown to be affected by PAHs, in contrast to others, such as interleukin-1beta and the aryl hydrocarbon receptor (AhR) repressor. These BaP-mediated gene regulations were fully validated by reverse transcription-quantitative polymerase chain reaction assays for some selected genes. Their bioinformatic analysis indicated that biological functions linked to immunity, inflammation, and cell death were among the most affected by BaP in human macrophages and that the AhR and p53 signaling pathways were the most significant canonical pathways activated by the PAH. AhR and p53 implications were moreover fully confirmed by the prevention of BaP-related upregulation of some selected target genes by AhR silencing or the use of pifithrin-alpha, an inhibitor of PAH bioactivation-related DNA damage/p53 pathways. Overall, these data, through identifying genes and signaling pathways targeted by PAHs in human macrophages, may contribute to better understand the molecular basis of the immunotoxicity of these environmental contaminants.
The FASEB Journal | 2003
Laurence Huc; Lydie Sparfel; Mary Rissel; Marie-Thérèse Dimanche-Boitrel; André Guillouzo; Olivier Fardel; Dominique Lagadic-Gossmann
The ubiquitous environmental pollutants polycyclic aromatic hydrocarbons are responsible for important carcinogenic and apoptotic effects, whose mechanisms are still poorly understood, owing to the multiplicity of possible cellular targets. Among these mechanisms, alterations of ionic homeostasis have been suggested. In this work, the effects of benzo(a)pyrene [B(a)P] on pHi were tested in the rat liver F258 epithelial cell line, using the fluoroprobe carboxy‐SNARF‐1. After a 48‐h treatment, B(a)P (50 nM) induced an alkalinization, followed by an acidification after 72 h and the development of apoptosis. Determinations of pHi recovery following an acid load showed an increased acid efflux at 48 h. Cariporide inhibited both the early alkalinization and the increased acid efflux, thus suggesting the involvement of Na+/H+ exchanger 1 (NHE1). Besides, α‐naphtoflavone (α‐NF), an inhibitor of CYP1A1‐mediated B(a)P metabolism, prevented all pHi changes, and NHE1 activation was blocked by the antioxidant thiourea, which inhibited CYP1A1 metabolism‐dependent H2O2 production. Regarding B(a)P‐induced apoptosis, this was prevented by α‐NF and bongkrekic acid, an inhibitor of mitochondria‐dependent apoptosis. Interestingly, apoptosis was significantly reduced by cariporide. Taken together, our results indicate that B(a)P, via H2O2 produced by CYP1A1‐dependent metabolism, induces an early activation of NHE1, resulting in alkalinization; this appears to play a significant role in mitochondria‐dependent B(a)P‐induced apoptosis.
Molecular Immunology | 2009
Emilie Bourdonnay; Claudie Morzadec; Lydie Sparfel; Marie-Dominique Galibert; Stéphane Jouneau; Corinne Martin-Chouly; Olivier Fardel; Laurent Vernhet
Inorganic arsenic, a major environmental contaminant, exerts immunosuppressive effects towards human cells. We previously demonstrated that relevant environmental concentrations of inorganic arsenic altered morphology and functions of human primary macrophages, suggesting interference with macrophage differentiation program. The goal of this study was to determine global effect of low concentrations of arsenic trioxide (As(2)O(3)) on gene expression profile in human primary macrophages, in order to identify molecular targets of inorganic arsenic, especially those relevant of macrophage differentiation process. Using a pan-genomic microarray, we demonstrate that exposure of human blood monocyte-derived macrophages to 1microM As(2)O(3) for 72h, a non-cytototoxic concentration, results in up-regulation of 32 genes and repression of 91 genes. Among these genes, 26 are specifically related to differentiation program of human macrophages. Particularly, we validated that As(2)O(3) strongly alters expression of MMP9, MMP12, CCL22, SPON2 and CXCL2 genes, which contribute to major macrophagic functions. Most of these metalloid effects were reversed when As(2)O(3)-treated macrophages were next cultured in arsenic-free medium. We also show that As(2)O(3) similarly regulates expression of this macrophagic gene subset in human alveolar macrophages, the phenotype of which closely resembles that of blood monocyte-derived macrophage. In conclusion, our study demonstrates that environmentally relevant concentrations of As(2)O(3) impair expression of macrophage-specific genes, which fully supports interference of metalloid with differentiation program of human macrophages.
Free Radical Biology and Medicine | 2014
Claudie Morzadec; Mélinda Macoch; Lydie Sparfel; Saadia Kerdine-Römer; Olivier Fardel; Laurent Vernhet
The transcription factor nuclear factor-erythroid 2-related-2 (Nrf2) controls cellular redox homeostasis and displays immunomodulatory properties. Nrf2 alters cytokine expression in murine T cells, but its effects in human T lymphocytes are unknown. This study investigated the expression and activity of Nrf2 in human activated CD4(+) T helper lymphocytes (Th cells) that mediate the adaptive immune response. Th cells were isolated from peripheral blood mononuclear cells and activated with antibodies against CD3 and CD28, mimicking physiologic Th cell stimulation by dendritic cells. Nrf2 is hardly detectable in unstimulated Th cells. Activation of Th cells rapidly and strongly increases the levels of Nrf2 protein by increasing NRF2 gene transcription. Th cell activation also enhances mRNA and protein levels of Nrf2 target genes encoding antioxidant enzymes. Blocking Nrf2 expression using chemical inhibitors or siRNAs prevents these gene inductions. Pretreatment with inorganic arsenic, a Nrf2 inducer that does not alter NRF2 gene expression, increases protein level and transcriptional activity of Nrf2 induced by Th cell stimulation. Inorganic arsenic enhances nuclear translocation of Nrf2, its interaction with the coactivator protein p300, and its DNA binding activity. Inhibition of Nrf2 expression abrogates the effects of inorganic arsenic on mRNA levels of antioxidant genes, but does not alter the expression of IL-2, TNF-α, interferon-γ, or IL-17 in Th cells activated in the absence or presence of the metalloid. In conclusion, this study demonstrates for the first time that stimulation of human Th cells increases transcription of the NRF2 gene and activity of the Nrf2 protein. However, modulation of Nrf2 levels does not modify the secretion of inflammatory cytokines from these T lymphocytes.
European Journal of Immunology | 2014
Laurie Prigent; Marc Robineau; Stéphane Jouneau; Claudie Morzadec; Laetitia Louarn; Laurent Vernhet; Olivier Fardel; Lydie Sparfel
The aryl hydrocarbon receptor (AhR) is a ligand‐dependent transcription factor that mediates immunosuppression caused by a variety of environmental contaminants, such as polycyclic aromatic hydrocarbons or dioxins. Recent evidence suggests that AhR plays an important role in T‐cell‐mediated immune responses by affecting the polarization and differentiation of activated T cells. However, the regulation of AhR expression in activated T cells remains poorly characterized. In the present study, we used purified human T cells stimulated with anti‐CD3 and anti‐CD28 Abs to investigate the effect of T‐cell activation on AhR mRNA and protein expression. The expression of AhR mRNA increased significantly and rapidly after T‐cell activation, identifying AhR as an immediate‐early activation gene. AhR upregulation occurred in all of the T‐cell subtypes, and is associated with its nuclear translocation and induction of the cytochromes P‐450 1A1 and 1B1 mRNA expression in the absence of exogenous signals. In addition, the use of an AhR antagonist or siRNA‐mediated AhR knockdown significantly inhibited IL‐22 expression, suggesting that expression and functional activation of AhR is necessary for the secretion of IL‐22 by activated T cells. In conclusion, our data support the idea that AhR is a major player in T‐cell physiology.
Toxicology and Applied Pharmacology | 2012
Claudie Morzadec; Mélinda Macoch; Marc Robineau; Lydie Sparfel; Olivier Fardel; Laurent Vernhet
Trivalent inorganic arsenic [As(III)] is an efficient anticancer agent used to treat patients suffering from acute promyelocytic leukemia. Recently, experimental studies have clearly demonstrated that this metalloid can also cure lymphoproliferative and/or pro-inflammatory syndromes in different murine models of chronic immune-mediated diseases. T helper (Th) 1 and Th17 lymphocytes play a central role in development of these diseases, in mice and humans, especially by secreting the potent pro-inflammatory cytokine interferon-γ and IL-17A, respectively. As(III) impairs basic functions of human T cells but its ability to modulate secretion of pro-inflammatory cytokines by differentiated Th lymphocytes is unknown. In the present study, we demonstrate that As(III), used at concentrations clinically achievable in plasma of patients, has no effect on the secretion of interferon-γ from Th1 cells but almost totally blocks the expression and the release of IL-17A from human Th17 lymphocytes co-stimulated for five days with anti-CD3 and anti-CD28 antibodies, in the presence of differentiating cytokines. In addition, As(III) specifically reduces mRNA levels of the retinoic-related orphan receptor (ROR)C gene which encodes RORγt, a key transcription factor controlling optimal IL-17 expression in fully differentiated Th17 cells. The metalloid also blocks initial expression of IL-17 gene induced by the co-stimulation, probably in part by impairing activation of the JNK/c-Jun pathway. In conclusion, our results demonstrate that As(III) represses expression of the major pro-inflammatory cytokine IL-17A produced by human Th17 lymphocytes, thus strengthening the idea that As(III) may be useful to treat inflammatory immune-mediated diseases in humans.
Free Radical Biology and Medicine | 2009
Marie-Laure Pinel-Marie; Lydie Sparfel; Sophie Desmots; Olivier Fardel
Polycyclic aromatic hydrocarbons such as benzo(a)pyrene (BaP) are toxic environmental contaminants known to regulate gene expression through activation of the aryl hydrocarbon receptor (AhR). In the present study, we demonstrated that acute treatment by BaP markedly increased expression of the NADPH oxidase subunit gene neutrophil cytosolic factor 1 (NCF1)/p47(phox) in primary human macrophages; NCF1 was similarly up-regulated in alveolar macrophages from BaP-instilled rats. NCF1 induction in BaP-treated human macrophages was prevented by targeting AhR, through its chemical inhibition or small interference RNA-mediated down-modulation of its expression. BaP moreover induced activity of the NCF1 promoter sequence, containing a consensus AhR-related xenobiotic-responsive element (XRE), and electrophoretic mobility shift assays and chromatin immunoprecipitation experiments indicated that BaP-triggered binding of AhR to this XRE. Finally, we showed that BaP exposure resulted in p47(phox) protein translocation to the plasma membrane and in potentiation of phorbol myristate acetate (PMA)-induced superoxide anion production in macrophages. This BaP priming effect toward NADPH oxidase activity was inhibited by the NADPH oxidase specific inhibitor apocynin and the chemical AhR inhibitor alpha-naphtoflavone. These results indicated that BaP induced NCF1/p47(phox) expression and subsequently enhanced superoxide anion production in PMA-treated human macrophages, in an AhR-dependent manner; such an NCF1/NADPH oxidase regulation by polycyclic aromatic hydrocarbons may participate in deleterious effects toward human health triggered by these environmental contaminants, including atherosclerosis and smoking-related diseases.
Toxicology Letters | 2011
Alexandre R.R. Péry; Céline Brochot; Sophie Desmots; Magali Boize; Lydie Sparfel; Olivier Fardel
Predictive toxicology aims at developing methodologies to relate the results obtained from in vitro experiments to in vivo exposure. In the case of polycyclic aromatic hydrocarbons (PAHs), a substantial amount of knowledge on effects and modes of action has been recently obtained from in vitro studies of gene expression. In the current study, we built a physiologically based toxicokinetic (PBTK) model to relate in vivo and in vitro gene expression in case of exposure to benzo(a)pyrene (BaP), a referent PAH. This model was calibrated with two toxicokinetic datasets obtained on rats exposed either through intratracheal instillation or through intravenous administration and on an in vitro degradation study. A good agreement was obtained between the models predictions and the concentrations measured in target organs, such as liver and lungs. Our model was able to relate correctly the gene expression for two genes targeted by PAHs, measured in vitro on primary human macrophages and in vivo in rat macrophages after exposure to BaP. Combining in vitro studies and PBTK modeling is promising for PAH risk assessment, especially for mixtures which are more efficiently studied in vitro than in vivo.