Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lyle Chamberlain is active.

Publication


Featured researches published by Lyle Chamberlain.


The International Journal of Robotics Research | 2008

Flying Fast and Low Among Obstacles: Methodology and Experiments

Sebastian Scherer; Sanjiv Singh; Lyle Chamberlain; Mike Elgersma

Safe autonomous flight is essential for widespread acceptance of aircraft that must fly close to the ground. We have developed a method of collision avoidance that can be used in three dimensions in much the same way as autonomous ground vehicles that navigate over unexplored terrain. Safe navigation is accomplished by a combination of online environmental sensing, path planning and collision avoidance. Here we outline our methodology and report results with an autonomous helicopter that operates at low elevations in uncharted environments, some of which are densely populated with obstacles such as buildings, trees and wires. We have recently completed over 700 successful runs in which the helicopter traveled between coarsely specified waypoints separated by hundreds of meters, at speeds of up to 10 m s—1 at elevations of 5—11 m above ground level. The helicopter safely avoids large objects such as buildings and trees but also wires as thin as 6 mm. We believe this represents the first time an air vehicle has traveled this fast so close to obstacles. The collision avoidance method learns to avoid obstacles by observing the performance of a human operator.


international conference on robotics and automation | 2007

Flying Fast and Low Among Obstacles

Sebastian Scherer; Sanjiv Singh; Lyle Chamberlain; Srikanth Saripalli

Safe autonomous flight is essential for widespread acceptance of aircraft that must fly close to the ground. We have developed a method of collision avoidance that can be used in three dimensions in much the same way as autonomous ground vehicles that navigate over unexplored terrain. Safe navigation is accomplished by a combination of online environmental sensing, path planning and collision avoidance. Here we report results with an autonomous helicopter that operates at low elevations in uncharted environments some of which are densely populated with obstacles such as buildings, trees and wires. We have recently completed over 1000 successful runs in which the helicopter traveled between coarsely specified waypoints separated by hundreds of meters, at speeds up to 10 meters/sec at elevations of 5-10 meters above ground level. The helicopter safely avoids large objects like buildings and trees but also wires as thin as 6 mm. We believe this represents the first time an air vehicle has traveled this fast so close to obstacles. Here we focus on the collision avoidance method that learns to avoid obstacles by observing the performance of a human operator.


Robotics and Autonomous Systems | 2012

Autonomous landing at unprepared sites by a full-scale helicopter

Sebastian Scherer; Lyle Chamberlain; Sanjiv Singh

Helicopters are valuable since they can land at unprepared sites; however, current unmanned helicopters are unable to select or validate landing zones (LZs) and approach paths. For operation in unknown terrain it is necessary to assess the safety of a LZ. In this paper, we describe a lidar-based perception system that enables a full-scale autonomous helicopter to identify and land in previously unmapped terrain with no human input. We describe the problem, real-time algorithms, perception hardware, and results. Our approach has extended the state of the art in terrain assessment by incorporating not only plane fitting, but by also considering factors such as terrain/skid interaction, rotor and tail clearance, wind direction, clear approach/abort paths, and ground paths. In results from urban and natural environments we were able to successfully classify LZs from point cloud maps. We also present results from 8 successful landing experiments with varying ground clutter and approach directions. The helicopter selected its own landing site, approaches, and then proceeds to land. To our knowledge, these experiments were the first demonstration of a full-scale autonomous helicopter that selected its own landing zones and landed.


intelligent robots and systems | 2011

Perception for a river mapping robot

Andrew Chambers; Supreeth Achar; Stephen Nuske; Joern Rehder; Bernd Kitt; Lyle Chamberlain; Justin Haines; Sebastian Scherer; Sanjiv Singh

Rivers with heavy vegetation are hard to map from the air. Here we consider the task of mapping their course and the vegetation along the shores with the specific intent of determining river width and canopy height. A complication in such riverine environments is that only intermittent GPS may be available depending on the thickness of the surrounding canopy. We present a multimodal perception system to be used for the active exploration and mapping of a river from a small rotorcraft flying a few meters above the water. We describe three key components that use computer vision, laser scanning, and inertial sensing to follow the river without the use of a prior map, estimate motion of the rotorcraft, ensure collision-free operation, and create a three dimensional representation of the riverine environment. While the ability to fly simplifies the navigation problem, it also introduces an additional set of constraints in terms of size, weight and power. Hence, our solutions are cognizant of the need to perform multi-kilometer missions with a small payload. We present experimental results along a 2km loop of river using a surrogate system.


international conference on robotics and automation | 2013

Infrastructure-free shipdeck tracking for autonomous landing

Sankalp Arora; Sezal Jain; Sebastian Scherer; Stephen Nuske; Lyle Chamberlain; Sanjiv Singh

Shipdeck landing is one of the most challenging tasks for a rotorcraft. Current autonomous rotorcraft use shipdeck mounted transponders to measure the relative pose of the vehicle to the landing pad. This tracking system is not only expensive but renders an unequipped ship unlandable. We address the challenge of tracking a shipdeck without additional infrastructure on the deck. We present two methods based on video and lidar that are able to track the shipdeck starting at a considerable distance from the ship. This redundant sensor design enables us to have two independent tracking systems. We show the results of the tracking algorithms in three different environments - field testing results on actual helicopter flights, in simulation with a moving shipdeck for lidar based tracking and in laboratory using an occluded, and, moving scaled model of a landing deck for camera based tracking. The complimentary modalities allow shipdeck tracking under varying conditions.


Journal of Field Robotics | 2015

Autonomous Exploration and Motion Planning for an Unmanned Aerial Vehicle Navigating Rivers

Stephen Nuske; Sanjiban Choudhury; Sezal Jain; Andrew Chambers; Luke Yoder; Sebastian Scherer; Lyle Chamberlain; Hugh Cover; Sanjiv Singh

Mapping a rivers geometry provides valuable information to help understand the topology and health of an environment and deduce other attributes such as which types of surface vessels could traverse the river. While many rivers can be mapped from satellite imagery, smaller rivers that pass through dense vegetation are occluded. We develop a micro air vehicle MAV that operates beneath the tree line, detects and maps the river, and plans paths around three-dimensional 3D obstacles such as overhanging tree branches to navigate rivers purely with onboard sensing, with no GPS and no prior map. We present the two enabling algorithms for exploration and for 3D motion planning. We extract high-level goal-points using a novel exploration algorithm that uses multiple layers of information to maximize the length of the river that is explored during a mission. We also present an efficient modification to the SPARTAN Sparse Tangential Network algorithm called SPARTAN-lite, which exploits geodesic properties on smooth manifolds of a tangential surface around obstacles to plan rapidly through free space. Using limited onboard resources, the exploration and planning algorithms together compute trajectories through complex unstructured and unknown terrain, a capability rarely demonstrated by flying vehicles operating over rivers or over ground. We evaluate our approach against commonly employed algorithms and compare guidance decisions made by our system to those made by a human piloting a boat carrying our system over multiple kilometers. We also present fully autonomous flights on riverine environments generating 3D maps over several hundred-meter stretches of tight winding rivers.


AIAA Infotech@Aerospace 2010 | 2010

Online Assessment of Landing Sites

Sebastian Scherer; Lyle Chamberlain; Sanjiv Singh

Assessing a landing zone (LZ) reliably is essential for safe operation of vertical takeoff and landing (VTOL) aerial vehicles that land at unimproved locations. Currently an operator has to rely on visual assessment to make an approach decision; however. visual information from afar is insufficient to judge slope and detect small obstacles. Prior work has modeled LZ quality based on plane fitting, which only partly represents the interaction between vehicle and ground. Our approach consists of a coarse evaluation based on slope and roughness criteria, a fine evaluation for skid contact, and body clearance of a location. We investigated whether the evaluation is correct for using terrain maps collected from a helicopter. This paper defines the problem of evaluation, describes our incremental real-time algorithm, and discusses the effectiveness of our approach. In results from urban and natural environments, we were able to successfully classify LZs from point cloud maps collected on a helicopter. The presented method enables detailed assessment of LZs without an landing approach, thereby improving safety. Still, the method assumes low-noise point cloud data. We intend to increase robustness to outliers while still detecting small obstacles in future work.


field and service robotics | 2015

Autonomous River Exploration

Sezal Jain; Stephen Nuske; Andrew Chambers; Luke Yoder; Hugh Cover; Lyle Chamberlain; Sebastian Scherer; Sanjiv Singh

Mapping a rivers course and width provides valuable information to help understand the ecology, topology and health of a particular environment. Such maps can also be useful to determine whether specific surface vessels can traverse the rivers. While rivers can be mapped from satellite imagery, the presence of vegetation, sometimes so thick that the canopy completely occludes the river, complicates the process of mapping. Here we propose the use of a micro air vehicle flying under the canopy to create accurate maps of the environment.We study and present a systemthat can autonomously explore riverswithout any prior information, and demonstrate an algorithm that can guide the vehicle based upon local sensors mounted on board the flying vehicle that can perceive the river, bank and obstacles. Our field experiments demonstrate what we believe is the first autonomous exploration of rivers by an autonomous vehicle. We show the 3D maps produced by our system over runs of 100-450 meters in length and compare guidance decisions made by our system to those made by a human piloting a boat carrying our system over multiple kilometers.


international conference on robotics and automation | 2012

First results in autonomous landing and obstacle avoidance by a full-scale helicopter

Sebastian Scherer; Lyle Chamberlain; Sanjiv Singh

Currently deployed unmanned rotorcraft rely on carefully preplanned missions and operate from prepared sites and thus avoid the need to perceive and react to the environment. Here we consider the problems of finding suitable but previously unmapped landing sites given general coordinates of the goal and planning collision free trajectories in real time to land at the “optimal” site. This requires accurate mapping, fast landing zone evaluation algorithms, and motion planning. We report here on the sensing, perception and motion planning integrated onto a full-scale helicopter that flies completely autonomously. We show results from 8 experiments for landing site selection and 5 runs at obstacles. These experiments have demonstrated the first autonomous full-scale helicopter that successfully selects its own landing sites and avoids obstacles.


human robot interaction | 2015

Mixed-Initiative Control of a Roadable Air Vehicle for Non-Pilots

Michael C. Dorneich; Emmanuel Letsu-Dake; Sanjiv Singh; Sebastian Scherer; Lyle Chamberlain; Marcel Bergerman

This work developed and evaluated a human-machine interface for the control of a roadable air vehicle (RAV), capable of surface driving, vertical takeoff, sustained flight, and landing. Military applications seek to combine the benefits of ground and air vehicles to maximize flexibility of movement but require that the operator have minimal pilot training. This makes the operator vulnerable to automation complexity issues; however, the operator will expect to be able to interact extensively and control the vehicle during flight. A mixed-initiative control approach mitigates these vulnerabilities by integrating the operator into many complex control domains in the way that they often expect---flexibly in charge, aware, but not required to issue every command. Intrinsic safety aspects were evaluated by comparing performance, decision making, precision, and workload for three RAV control paradigms: human-only, fully automated, and mixed-initiative control. The results suggest that the mixed-initiative paradigm leverages the benefits of human and automated control while also avoiding the drawbacks associated with each.

Collaboration


Dive into the Lyle Chamberlain's collaboration.

Top Co-Authors

Avatar

Sanjiv Singh

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar

Sebastian Scherer

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar

Stephen Nuske

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar

Hugh Cover

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar

Andrew Chambers

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar

Sezal Jain

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar

Luke Yoder

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar

Marcel Bergerman

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sankalp Arora

Carnegie Mellon University

View shared research outputs
Researchain Logo
Decentralizing Knowledge