Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lyle G. Whyte is active.

Publication


Featured researches published by Lyle G. Whyte.


Applied and Environmental Microbiology | 2003

Characterization of Hydrocarbon-Degrading Microbial Populations in Contaminated and Pristine Alpine Soils

Rosa Margesin; Diane Labbé; Franz Schinner; Charles W. Greer; Lyle G. Whyte

ABSTRACT Biodegradation of petroleum hydrocarbons in cold environments, including Alpine soils, is a result of indigenous cold-adapted microorganisms able to degrade these contaminants. In the present study, the prevalence of seven genotypes involved in the degradation of n-alkanes (Pseudomonas putida GPo1 alkB; Acinetobacter spp. alkM; Rhodococcus spp. alkB1, and Rhodococcus spp. alkB2), aromatic hydrocarbons (P. putida xylE), and polycyclic aromatic hydrocarbons (P. putida ndoB and Mycobacterium sp. strain PYR-1 nidA) was determined in 12 oil-contaminated (428 to 30,644 mg of total petroleum hydrocarbons [TPH]/kg of soil) and 8 pristine Alpine soils from Tyrol (Austria) by PCR hybridization analyses of total soil community DNA, using oligonucleotide primers and DNA probes specific for each genotype. The soils investigated were also analyzed for various physical, chemical, and microbiological parameters, and statistical correlations between all parameters were determined. Genotypes containing genes from gram-negative bacteria (P. putida alkB, xylE, and ndoB and Acinetobacter alkM) were detected to a significantly higher percentage in the contaminated (50 to 75%) than in the pristine (0 to 12.5%) soils, indicating that these organisms had been enriched in soils following contamination. There was a highly significant positive correlation (P < 0.001) between the level of contamination and the number of genotypes containing genes from P. putida and Acinetobacter sp. but no significant correlation between the TPH content and the number of genotypes containing genes from gram-positive bacteria (Rhodococcus alkB1 and alkB2 and Mycobacterium nidA). These genotypes were detected at a high frequency in both contaminated (41.7 to 75%) and pristine (37.5 to 50%) soils, indicating that they are already present in substantial numbers before a contamination event. No correlation was found between the prevalence of hydrocarbon-degradative genotypes and biological activities (respiration, fluorescein diacetate hydrolysis, lipase activity) or numbers of culturable hydrocarbon-degrading soil microorganisms; there also was no correlation between the numbers of hydrocarbon degraders and the contamination level. The measured biological activities showed significant positive correlation with each other, with the organic matter content, and partially with the TPH content and a significant negative correlation with the soil dry-mass content (P < 0.05 to 0.001).


Applied and Environmental Microbiology | 2001

Selection of Specific Endophytic Bacterial Genotypes by Plants in Response to Soil Contamination

Steven D. Siciliano; T. Nathalie Fortin; Anca Mihoc; Gesine Wisse; Suzanne Labelle; Danielle Beaumier; Danielle Ouellette; Réal Roy; Lyle G. Whyte; M. Kathy Banks; Paul Schwab; Kenneth Lee; Charles W. Greer

ABSTRACT Plant-bacterial combinations can increase contaminant degradation in the rhizosphere, but the role played by indigenous root-associated bacteria during plant growth in contaminated soils is unclear. The purpose of this study was to determine if plants had the ability to selectively enhance the prevalence of endophytes containing pollutant catabolic genes in unrelated environments contaminated with different pollutants. At petroleum hydrocarbon contaminated sites, two genes encoding hydrocarbon degradation, alkane monooxygenase (alkB) and naphthalene dioxygenase (ndoB), were two and four times more prevalent in bacteria extracted from the root interior (endophytic) than from the bulk soil and sediment, respectively. In field sites contaminated with nitroaromatics, two genes encoding nitrotoluene degradation, 2-nitrotoluene reductase (ntdAa) and nitrotoluene monooxygenase (ntnM), were 7 to 14 times more prevalent in endophytic bacteria. The addition of petroleum to sediment doubled the prevalence ofndoB-positive endophytes in Scirpus pungens, indicating that the numbers of endophytes containing catabolic genotypes were dependent on the presence and concentration of contaminants. Similarly, the numbers of alkB- orndoB-positive endophytes in Festuca arundinaceawere correlated with the concentration of creosote in the soil but not with the numbers of alkB- or ndoB-positive bacteria in the bulk soil. Our results indicate that the enrichment of catabolic genotypes in the root interior is both plant and contaminant dependent.


The ISME Journal | 2010

The functional potential of high Arctic permafrost revealed by metagenomic sequencing, qPCR and microarray analyses

Etienne Yergeau; Hervé Hogues; Lyle G. Whyte; Charles W. Greer

The fate of the carbon stocked in permafrost following global warming and permafrost thaw is of major concern in view of the potential for increased CH4 and CO2 emissions from these soils. Complex carbon compound degradation and greenhouse gas emissions are due to soil microbial communities, but no comprehensive study has yet addressed their composition and functional potential in permafrost. Here, a 2-m deep permafrost sample and its overlying active layer soil were subjected to metagenomic sequencing, quantitative PCR (qPCR) and microarray analyses. The active layer soil and the 2-m permafrost microbial community structures were very similar, with Actinobacteria being the dominant phylum. The two samples also possessed a highly similar spectrum of functional genes, especially when compared with other already published metagenomes. Key genes related to methane generation, methane oxidation and organic matter degradation were highly diverse for both samples in the metagenomic libraries and some (for example, pmoA) showed relatively high abundance in qPCR assays. Genes related to nitrogen fixation and ammonia oxidation, which could have important roles following climatic change in these nitrogen-limited environments, showed low diversity but high abundance. The 2-m permafrost showed lower abundance and diversity for all the assessed genes and taxa. Experimental biases were also evaluated using qPCR and showed that the whole-community genome amplification technique used caused representational biases in the metagenomic libraries by increasing the abundance of Bacteroidetes and decreasing the abundance of Actinobacteria. This study describes for the first time the detailed functional potential of permafrost-affected soils.


Applied and Environmental Microbiology | 2002

Gene Cloning and Characterization of Multiple Alkane Hydroxylase Systems in Rhodococcus Strains Q15 and NRRL B-16531

Lyle G. Whyte; Theo H. M. Smits; Diane Labbé; Bernard Witholt; Charles W. Greer; J.B. van Beilen

ABSTRACT The alkane hydroxylase systems of two Rhodococcus strains (NRRL B-16531 and Q15, isolated from different geographical locations) were characterized. Both organisms contained at least four alkane monooxygenase gene homologs (alkB1, alkB2, alkB3, and alkB4). In both strains, the alkB1 and alkB2 homologs were part of alk gene clusters, each encoding two rubredoxins (rubA1 and rubA2; rubA3 and rubA4), a putative TetR transcriptional regulatory protein (alkU1; alkU2), and, in the alkB1 cluster, a rubredoxin reductase (rubB). The alkB3 and alkB4 homologs were found as separate genes which were not part of alk gene clusters. Functional heterologous expression of some of the rhodococcal alk genes (alkB2, rubA2, and rubA4 [NRRL B-16531]; alkB2 and rubB [Q15]) was achieved in Escherichia coli and Pseudomonas expression systems. Pseudomonas recombinants containing rhodococcal alkB2 were able to mineralize and grow on C12 to C16n-alkanes. All rhodococcal alkane monooxygenases possessed the highly conserved eight-histidine motif, including two apparent alkane monooxygenase signature motifs (LQRH[S/A]DHH and NYXEHYG[L/M]), and the six hydrophobic membrane-spanning regions found in all alkane monooxygenases related to the Pseudomonas putida GPo1 alkane monooxygenase. The presence of multiple alkane hydroxylases in the two rhodococcal strains is reminiscent of other multiple-degradative-enzyme systems reported in Rhodococcus.


Extremophiles | 2006

Microbial ecology and biodiversity in permafrost

Blaire Steven; R. Leveille; Wayne H. Pollard; Lyle G. Whyte

Permafrost represents 26% of terrestrial soil ecosystems; yet its biology, essentially microbiology, remains relatively unexplored. The permafrost environment is considered extreme because indigenous microorganisms must survive prolonged exposure to subzero temperatures and background radiation for geological time scales in a habitat with low water activity and extremely low rates of nutrient and metabolite transfer. Yet considerable numbers and biodiversity of bacteria exist in permafrost, some of which may be among the most ancient viable life on Earth. This review describes the permafrost environment as a microbial habitat and reviews recent studies examining microbial biodiversity found in permafrost as well as microbial growth and activity at ambient in situ subzero temperatures. These investigations suggest that functional microbial ecosystems exist within the permafrost environment and may have important implications on global biogeochemical processes as well as the search for past or extant life in permafrost presumably present on Mars and other bodies in our solar system.


The ISME Journal | 2013

Bacterial growth at −15 °C; molecular insights from the permafrost bacterium Planococcus halocryophilus Or1

Nadia C. S. Mykytczuk; Simon J. Foote; Chris R Omelon; Gordon Southam; Charles W. Greer; Lyle G. Whyte

Planococcus halocryophilus strain Or1, isolated from high Arctic permafrost, grows and divides at −15 °C, the lowest temperature demonstrated to date, and is metabolically active at −25 °C in frozen permafrost microcosms. To understand how P. halocryophilus Or1 remains active under the subzero and osmotically dynamic conditions that characterize its native permafrost habitat, we investigated the genome, cell physiology and transcriptomes of growth at −15 °C and 18% NaCl compared with optimal (25 °C) temperatures. Subzero growth coincides with unusual cell envelope features of encrustations surrounding cells, while the cytoplasmic membrane is significantly remodeled favouring a higher ratio of saturated to branched fatty acids. Analyses of the 3.4 Mbp genome revealed that a suite of cold and osmotic-specific adaptive mechanisms are present as well as an amino acid distribution favouring increased flexibility of proteins. Genomic redundancy within 17% of the genome could enable P. halocryophilus Or1 to exploit isozyme exchange to maintain growth under stress, including multiple copies of osmolyte uptake genes (Opu and Pro genes). Isozyme exchange was observed between the transcriptome data sets, with selective upregulation of multi-copy genes involved in cell division, fatty acid synthesis, solute binding, oxidative stress response and transcriptional regulation. The combination of protein flexibility, resource efficiency, genomic plasticity and synergistic adaptation likely compensate against osmotic and cold stresses. These results suggest that non-spore forming P. halocryophilus Or1 is specifically suited for active growth in its Arctic permafrost habitat (ambient temp. ∼−16 °C), indicating that such cryoenvironments harbor a more active microbial ecosystem than previously thought.


FEMS Microbiology Ecology | 2002

Prevalence of alkane monooxygenase genes in Arctic and Antarctic hydrocarbon-contaminated and pristine soils.

Lyle G. Whyte; A. Schultz; J.B. van Beilen; A.P. Luz; V. Pellizari; Diane Labbé; Charles W. Greer

Abstract The prevalence of four alkane monooxygenase genotypes (Pseudomonas putida GPo1, Pp alkB; Rhodococcus sp. strain Q15, Rh alkB1 and Rh alkB2; and Acinetobacter sp. strain ADP-1, Ac alkM) in hydrocarbon-contaminated and pristine soils from the Arctic and Antarctica were determined by both culture-independent (PCR hybridization analyses) and culture-dependent (colony hybridization analyses) molecular methods, using oligonucleotide primers and DNA probes specific for each of the alk genotypes. PCR hybridization of total soil community DNA detected the rhodococcal alkB genotypes in most of the contaminated (Rh alkB1, 18/20 soils; Rh alkB2, 13/20) and many pristine soils (Rh alkB1, 9/10 soils; Rh alkB2, 7/10), while Pp alkB was generally detected in the contaminated soils (15/20) but less often in pristine soils (5/10). Ac alkM was rarely detected in the soils (1/30). The colony hybridization technique was used to determine the prevalence of each of the alk genes and determine their relative abundance in culturable cold-adapted (5 degrees C) and mesophilic populations (37 degrees C) from eight of the polar soils. The cold-adapted populations, in general, possessed relatively higher percentages of the Rh alkB genotypes (Rh alkB1, 1.9% (0.55); Rh alkB2, 2.47% (0.89)), followed by the Pp alkB (1.13% (0.50)), and then the Ac alkM (0.53% (0.36)). The Rh alkB1 genotype was clearly more prevalent in culturable cold-adapted bacteria (1.9% (0.55)) than in culturable mesophiles (0.41 (0.55)), suggesting that cold-adapted bacteria are the predominant organisms possessing this genotype. Overall, these results indicated that (i) Acinetobacter spp. are not predominant members of polar alkane degradative microbial communities, (ii) Pseudomonas spp. may become enriched in polar soils following contamination events, and (iii) Rhodococcus spp. may be the predominant alkane-degradative bacteria in both pristine and contaminated polar soils.


Environmental Microbiology | 2008

Microbial diversity and activity through a permafrost/ground ice core profile from the Canadian high Arctic

Blaire Steven; Wayne H. Pollard; Charles W. Greer; Lyle G. Whyte

Culture-dependent and culture-independent methods were used in an investigation of the microbial diversity in a permafrost/massive ground ice core from the Canadian high Arctic. Denaturing gradient gel electrophoresis as well as Bacteria and Archaea 16S rRNA gene clone libraries showed differences in the composition of the microbial communities in the distinct core horizons. Microbial diversity was similar in the active layer (surface) soil, permafrost table and permafrost horizons while the ground ice microbial community showed low diversity. Bacteria and Archaea sequences related to the Actinobacteria (54%) and Crenarchaeota (100%) respectively were predominant in the active layer while the majority of sequences in the permafrost were related to the Proteobacteria (57%) and Euryarchaeota (76%). The most abundant phyla in the ground ice clone libraries were the Firmicutes (59%) and Crenarchaeota (82%). Isolates from the permafrost were both less abundant and diverse than in the active layer soil, while no culturable cells were recovered from the ground ice. Mineralization of [1-(14)C] acetic acid and [2-(14)C] glucose was used to detect microbial activity in the different horizons in the core. Mineralization was detected at near ambient permafrost temperatures (-15 degrees C), indicating that permafrost may harbour an active microbial population, while the low microbial diversity, abundance and activity in ground ice suggests a less hospitable microbial habitat.


Applied and Environmental Microbiology | 2007

Characterization of the Prokaryotic Diversity in Cold Saline Perennial Springs of the Canadian High Arctic

Nancy N Perreault; Dale T. Andersen; Wayne H. Pollard; Charles W. Greer; Lyle G. Whyte

ABSTRACT The springs at Gypsum Hill and Colour Peak on Axel Heiberg Island in the Canadian Arctic originate from deep salt aquifers and are among the few known examples of cold springs in thick permafrost on Earth. The springs discharge cold anoxic brines (7.5 to 15.8% salts), with a mean oxidoreduction potential of −325 mV, and contain high concentrations of sulfate and sulfide. We surveyed the microbial diversity in the sediments of seven springs by denaturing gradient gel electrophoresis (DGGE) and analyzing clone libraries of 16S rRNA genes amplified with Bacteria and Archaea-specific primers. Dendrogram analysis of the DGGE banding patterns divided the springs into two clusters based on their geographic origin. Bacterial 16S rRNA clone sequences from the Gypsum Hill library (spring GH-4) were classified into seven phyla (Actinobacteria, Bacteroidetes, Firmicutes, Gemmatimonadetes, Proteobacteria, Spirochaetes, and Verrucomicrobia); Deltaproteobacteria and Gammaproteobacteria sequences represented half of the clone library. Sequences related to Proteobacteria (82%), Firmicutes (9%), and Bacteroidetes (6%) constituted 97% of the bacterial clone library from Colour Peak (spring CP-1). Most GH-4 archaeal clone sequences (79%) were related to the Crenarchaeota while half of the CP-1 sequences were related to orders Halobacteriales and Methanosarcinales of the Euryarchaeota. Sequences related to the sulfur-oxidizing bacterium Thiomicrospira psychrophila dominated both the GH-4 (19%) and CP-1 (45%) bacterial libraries, and 56 to 76% of the bacterial sequences were from potential sulfur-metabolizing bacteria. These results suggest that the utilization and cycling of sulfur compounds may play a major role in the energy production and maintenance of microbial communities in these unique, cold environments.


Applied and Environmental Microbiology | 2009

Microarray and Real-Time PCR Analyses of the Responses of High-Arctic Soil Bacteria to Hydrocarbon Pollution and Bioremediation Treatments

Etienne Yergeau; Mélanie Arbour; Roland Brousseau; David Juck; John R. Lawrence; Luke Masson; Lyle G. Whyte; Charles W. Greer

ABSTRACT High-Arctic soils have low nutrient availability, low moisture content, and very low temperatures and, as such, they pose a particular problem in terms of hydrocarbon bioremediation. An in-depth knowledge of the microbiology involved in this process is likely to be crucial to understand and optimize the factors most influencing bioremediation. Here, we compared two distinct large-scale field bioremediation experiments, located at the Canadian high-Arctic stations of Alert (ex situ approach) and Eureka (in situ approach). Bacterial community structure and function were assessed using microarrays targeting the 16S rRNA genes of bacteria found in cold environments and hydrocarbon degradation genes as well as quantitative reverse transcriptase PCR targeting key functional genes. The results indicated a large difference between sampling sites in terms of both soil microbiology and decontamination rates. A rapid reorganization of the bacterial community structure and functional potential as well as rapid increases in the expression of alkane monooxygenases and polyaromatic hydrocarbon-ring-hydroxylating dioxygenases were observed 1 month after the bioremediation treatment commenced in the Alert soils. In contrast, no clear changes in community structure were observed in Eureka soils, while key gene expression increased after a relatively long lag period (1 year). Such discrepancies are likely caused by differences in bioremediation treatments (i.e., ex situ versus in situ), weathering of the hydrocarbons, indigenous microbial communities, and environmental factors such as soil humidity and temperature. In addition, this study demonstrates the value of molecular tools for the monitoring of polar bacteria and their associated functions during bioremediation.

Collaboration


Dive into the Lyle G. Whyte's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge