Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lynda Erskine is active.

Publication


Featured researches published by Lynda Erskine.


Neuron | 2009

DSCAM and DSCAML1 function in self-avoidance in multiple cell types in the developing mouse retina.

Peter G. Fuerst; Freyja Bruce; Miao Tian; Wei Wei; Justin Elstrott; Marla B. Feller; Lynda Erskine; Joshua H. Singer; Robert W. Burgess

DSCAM and DSCAM-LIKE1 (DSCAML1) serve diverse neurodevelopmental functions, including axon guidance, synaptic adhesion, and self-avoidance, depending on the species, cell type, and gene family member studied. We examined the function of DSCAM and DSCAML1 in the developing mouse retina. In addition to a subset of amacrine cells, Dscam was expressed in most retinal ganglion cells (RGCs). RGCs had fasciculated dendrites and clumped cell bodies in Dscam(-/-) mice, suggesting a role in self-avoidance. Dscaml1 was expressed in the rod circuit, and mice lacking Dscaml1 had fasciculated rod bipolar cell dendrites and clumped AII amacrine cell bodies, also indicating a role in self-avoidance. Neurons in Dscam or Dscaml1 mutant retinas stratified their processes appropriately in synaptic laminae in the inner plexiform layer, and functional synapses formed in the rod circuit in mice lacking Dscaml1. Therefore, DSCAM and DSCAML1 function similarly in self-avoidance, and are not essential for synaptic specificity in the mouse retina.


Neuron | 2011

VEGF Signaling through Neuropilin 1 Guides Commissural Axon Crossing at the Optic Chiasm

Lynda Erskine; Susan Reijntjes; Thomas Pratt; Laura Denti; Quenten Schwarz; Joaquim M. Vieira; Bennett Alakakone; Derryck Shewan; Christiana Ruhrberg

Summary During development, the axons of retinal ganglion cell (RGC) neurons must decide whether to cross or avoid the midline at the optic chiasm to project to targets on both sides of the brain. By combining genetic analyses with in vitro assays, we show that neuropilin 1 (NRP1) promotes contralateral RGC projection in mammals. Unexpectedly, the NRP1 ligand involved is not an axon guidance cue of the class 3 semaphorin family, but VEGF164, the neuropilin-binding isoform of the classical vascular growth factor VEGF-A. VEGF164 is expressed at the chiasm midline and is required for normal contralateral growth in vivo. In outgrowth and growth cone turning assays, VEGF164 acts directly on NRP1-expressing contralateral RGCs to provide growth-promoting and chemoattractive signals. These findings have identified a permissive midline signal for axons at the chiasm midline and provide in vivo evidence that VEGF-A is an essential axon guidance cue.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Permissive corridor and diffusible gradients direct medial ganglionic eminence cell migration to the neocortex

Hynek Wichterle; Manuel Alvarez-Dolado; Lynda Erskine; Arturo Alvarez-Buylla

Young neurons born in the medial ganglionic eminence (MGE) migrate a long distance dorsally, giving rise to several types of interneurons in neocortex. The mechanisms that facilitate selective dorsal dispersion of MGE cells while restricting their movement ventrally into neighboring regions are not known. Using microtransplantation into fetal brain slices and onto dissociated substrate cells on floating filters (spot assay), we demonstrate that ventral forebrain regions neighboring the MGE are nonpermissive for MGE cell migration, whereas the dorsal regions leading to the neocortex are increasingly permissive. Spot assay experiments using filters with different pore sizes indicate that the permissive factors are not diffusible. We also show that MGE cells respond to chemoattractive and inhibitory factors diffusing from the neocortex and ventromedial forebrain, respectively. We propose that the final extent and regional specificity of MGE cell dispersion is largely dictated by contact guidance through a selectively permissive environment, flanked by nonpermissive tissues. In addition, we propose that chemotactic guidance cues superimposed over the permissive corridor facilitate efficient dorsal migration of MGE cells.


Asn Neuro | 2014

Connecting the retina to the brain.

Lynda Erskine; Eloísa Herrera

The visual system is beautifully crafted to transmit information of the external world to visual processing and cognitive centers in the brain. For visual information to be relayed to the brain, a series of axon pathfinding events must take place to ensure that the axons of retinal ganglion cells, the only neuronal cell type in the retina that sends axons out of the retina, find their way out of the eye to connect with targets in the brain. In the past few decades, the power of molecular and genetic tools, including the generation of genetically manipulated mouse lines, have multiplied our knowledge about the molecular mechanisms involved in the sculpting of the visual system. Here, we review major advances in our understanding of the mechanisms controlling the differentiation of RGCs, guidance of their axons from the retina to the primary visual centers, and the refinement processes essential for the establishment of topographic maps and eye-specific axon segregation. Human disorders, such as albinism and achiasmia, that impair RGC axon growth and guidance and, thus, the establishment of a fully functioning visual system will also be discussed.


Developmental Biology | 2012

Cell autonomy of DSCAM function in retinal development.

Peter G. Fuerst; Freyja Bruce; Ryan P. Rounds; Lynda Erskine; Robert W. Burgess

Cell adhesion molecules (CAMs) provide identifying cues by which neural architecture is sculpted. The Down Syndrome Cell Adhesion Molecule (DSCAM) is required for many neurodevelopmental processes in different species and also has several potential mechanisms of activity, including homophilic adhesion, homophilic repulsion and heterophilic interactions. In the mouse retina, Dscam is expressed in many, but not all neuronal subtypes. Mutations in Dscam cause the fasciculation of dendrites of neighboring homotypic neurons, indicating a role in self-avoidance among cells of a given type, a disruption of the non-random patterning of their cell bodies, and a decrease in developmental cell death in affected cell populations. In order to address how DSCAM facilitates retinal pattering, we developed a conditional allele of Dscam to use alongside existing Dscam mutant mouse strains. Conditional deletion of Dscam reproduces cell spacing, cell number and dendrite arborization defects. Inducible deletion of Dscam and retinal ganglion cell depletion in Brn3b mutant retinas both indicate that these DSCAM-mediated phenotypes can occur independently. In chimeric retinas, in which wild type and Dscam mutant cells are comingled, Dscam mutant cells entangle adjacent wild type cells of the same type, as if both cells were lacking Dscam, consistent with DSCAM-dependent cell spacing and neurite arborization being mediated through homophilic binding cell-to-cell. Deletion of Dscam in specific cell types causes cell-type-autonomous cell body spacing defects, indicating that DSCAM mediates arborization and spacing by acting within given cell types. We also examine the cell autonomy of DSCAM in laminar stratification and find that laminar disorganization can be caused in a non-cell autonomous fashion. Finally, we find Dscam dosage-dependent defects in developmental cell death and amacrine cell spacing, relevant to the increased cell death and other disorders observed in Down syndrome mouse models and human patients, in which Dscam is present in three copies.


Development | 2015

VEGF189 binds NRP1 and is sufficient for VEGF/NRP1-dependent neuronal patterning in the developing brain

Miguel Tillo; Lynda Erskine; Anna Cariboni; Alessandro Fantin; Andy Joyce; Laura Denti; Christiana Ruhrberg

The vascular endothelial growth factor (VEGFA, VEGF) regulates neurovascular patterning. Alternative splicing of the Vegfa gene gives rise to three major isoforms termed VEGF121, VEGF165 and VEGF189. VEGF165 binds the transmembrane protein neuropilin 1 (NRP1) and promotes the migration, survival and axon guidance of subsets of neurons, whereas VEGF121 cannot activate NRP1-dependent neuronal responses. By contrast, the role of VEGF189 in NRP1-mediated signalling pathways has not yet been examined. Here, we have combined expression studies and in situ ligand-binding assays with the analysis of genetically altered mice and in vitro models to demonstrate that VEGF189 can bind NRP1 and promote NRP1-dependent neuronal responses. Summary: Although VEGF165 was thought to be the sole VEGF isoform acting through neuropilin 1 (NRP1), VEGF189 also binds to and signals through NRP1 in several types of developing mouse neurons.


Proceedings of the National Academy of Sciences of the United States of America | 2017

DSCAM promotes axon fasciculation and growth in the developing optic pathway

Freyja Bruce; Samantha Brown; Jonathan N. Smith; Peter G. Fuerst; Lynda Erskine

Significance Our findings demonstrate a function for Down syndrome cell adhesion molecule (DSCAM) in the embryonic development of the mouse visual system. We found that DSCAM promotes fasciculation and growth of axons in the developing mouse optic pathway, at least in part, through homotypic interactions. We also found that shed DSCAM can act independently of direct cell–cell contact to provide growth-promoting signals. Because the Dscam mutant phenotypes are mediated in a dose-dependent manner, these results are potentially relevant to human Down syndrome, in which Dscam is overexpressed as a result of trisomy of chromosome 21, and fragile-X syndrome, in which Dscam is overexpressed because of misregulation of Dscam mRNA. Although many aspects of optic pathway development are beginning to be understood, the mechanisms promoting the growth of retinal ganglion cell (RGC) axons toward visual targets remain largely unknown. Down syndrome cell adhesion molecule (Dscam) is expressed by mouse RGCs shortly after they differentiate at embryonic day 12 and is essential for multiple aspects of postnatal visual system development. Here we show that Dscam is also required during embryonic development for the fasciculation and growth of RGC axons. Dscam is expressed along the developing optic pathway in a pattern consistent with a role in regulating RGC axon outgrowth. In mice carrying spontaneous mutations in Dscam (Dscamdel17; Dscam2J), RGC axons pathfind normally, but growth from the chiasm toward their targets is impaired, resulting in a delay in RGC axons reaching the dorsal thalamus compared with that seen in wild-type littermates. Conversely, Dscam gain of function results in exuberant growth into the dorsal thalamus. The growth of ipsilaterally projecting axons is particularly affected. Axon organization in the optic chiasm and tract and RGC growth cone morphologies are also altered in Dscam mutants. In vitro DSCAM promotes RGC axon growth and fasciculation, and can act independently of cell contact. In vitro and in situ DSCAM is required both in the RGC axons and in their environment for the promotion of axon outgrowth, consistent with a homotypic mode of action. These findings identify DSCAM as a permissive signal that promotes the growth and fasciculation of RGC axons, controlling the timing of when RGC axons reach their targets.


Development | 2017

VEGF-A and neuropilin 1 (NRP1) shape axon projections in the developing CNS via dual roles in neurons and blood vessels

Lynda Erskine; Urielle François; Laura Denti; Andy Joyce; Miguel Tillo; Freyja Bruce; Neil Vargesson; Christiana Ruhrberg

Visual information is relayed from the eye to the brain via retinal ganglion cell (RGC) axons. Mice lacking NRP1 or NRP1-binding VEGF-A isoforms have defective RGC axon organisation alongside brain vascular defects. It is not known whether axonal defects are caused exclusively by defective VEGF-A signalling in RGCs or are exacerbated by abnormal vascular morphology. Targeted NRP1 ablation in RGCs with a Brn3bCre knock-in allele reduced axonal midline crossing at the optic chiasm and optic tract fasciculation. In contrast, Tie2-Cre-mediated endothelial NRP1 ablation induced axon exclusion zones in the optic tracts without impairing axon crossing. Similar defects were observed in Vegfa120/120 and Vegfa188/188 mice, which have vascular defects as a result of their expression of single VEGF-A isoforms. Ectopic midline vascularisation in endothelial Nrp1 and Vegfa188/188 mutants caused additional axonal exclusion zones within the chiasm. As in vitro and in vivo assays demonstrated that vessels do not repel axons, abnormally large or ectopically positioned vessels are likely to present physical obstacles to axon growth. We conclude that proper axonal wiring during brain development depends on the precise molecular control of neurovascular co-patterning. Summary: NRP1 plays a dual role in retinal ganglion cells and in vascular endothelial cells to organise axons along the optic pathway between the mouse retina and diencephalon.


Journal of Anatomy | 2018

CPS49-induced neurotoxicity does not cause limb patterning anomalies in developing chicken embryos

Chris Mahony; Scott McMenemy; Alexandra Rafipay; Shaunna-Leigh Beedie; Lucas Rosa Fraga; Michael Gütschow; William D. Figg; Lynda Erskine; Neil Vargesson

Thalidomide notoriously caused severe birth defects, particularly to the limbs, in those exposed in utero following maternal use of the drug to treat morning sickness. How the drug caused these birth defects remains unclear. Many theories have been proposed including actions on the forming blood vessels. However, thalidomide survivors also have altered nerve patterns and the drug is known for its neurotoxic actions in adults following prolonged use. We have previously shown that CPS49, an anti‐angiogenic analog of thalidomide, causes a range of limb malformations in a time‐sensitive manner in chicken embryos. Here we investigated whether CPS49 also is neurotoxic and whether effects on nerve development impact upon limb development. We found that CPS49 is neurotoxic, just like thalidomide, and can cause some neuronal loss late developing chicken limbs, but only when the limb is already innervated. However, CPS49 exposure does not cause defects in limb size when added to late developing chicken limbs. In contrast, in early limb buds which are not innervated, CPS49 exposure affects limb area significantly. To investigate in more detail the role of neurotoxicity and its impact on chicken limb development we inhibited nerve innervation at a range of developmental timepoints through using β‐bungarotoxin. We found that neuronal inhibition or ablation before, during or after limb outgrowth and innervation does not result in obvious limb cartilage patterning or number changes. We conclude that while CPS49 is neurotoxic, given the late innervation of the developing limb, and that neuronal inhibition/ablation throughout limb development does not cause similar limb patterning anomalies to those seen in thalidomide survivors, nerve defects are not the primary underlying cause of the severe limb patterning defects induced by CPS49/thalidomide.


The Journal of Physiology | 1995

The effects of lyotropic anions on electric field‐induced guidance of cultured frog nerves.

Lynda Erskine; Colin D. McCaig

1. Dissociated Xenopus neurites turn cathodally in small applied electric fields. Increasing the external polycation concentration alters the direction and extent of field‐induced orientation. A decrease in membrane surface charge may underlie these effects. 2. Lyotropic anions increase membrane surface charge and we have examined the effect of perchlorate (ClO4‐), thiocyanate (SCN‐) and sulphate (SO4(2‐)) on galvanic nerve orientation. 3. Perchlorate and SCN‐ had no effect on field‐induced cathodal turning, whereas incubation with SO4(2‐) was inhibitory. In addition to its effects on surface charge, SO4(2‐) increases production of the second messengers diacylglycerol and inositol trisphosphate. Interestingly, lithium (Li+), a blocker of polyphosphoinositide metabolism, had a similar effect to SO4(2‐) on field‐induced neurite orientation. 4. We conclude that increasing surface charge with lyotropic anions neither enhances galvanotropic orientation nor underlies the inhibitory effects of SO4(2‐) and suggest that modulation of galvanotropism by SO4(2‐) occurs owing to changes in the inositolphospholipid second messenger system.

Collaboration


Dive into the Lynda Erskine's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christiana Ruhrberg

UCL Institute of Ophthalmology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laura Denti

UCL Institute of Ophthalmology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andy Joyce

UCL Institute of Ophthalmology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miguel Tillo

UCL Institute of Ophthalmology

View shared research outputs
Researchain Logo
Decentralizing Knowledge