Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lyndel W. Meinhardt is active.

Publication


Featured researches published by Lyndel W. Meinhardt.


Current Microbiology | 2006

In Vitro Production of Biotrophic-Like Cultures of Crinipellis perniciosa , the Causal Agent of Witches’ Broom Disease of Theobroma cacao

Lyndel W. Meinhardt; Cláudia M. Bellato; Johana Rincones; Ricardo A. Azevedo; Julio Cezar M. Cascardo; Gonçalo Amarante Guimarães Pereira

Witches’ broom disease (WBD) of cacao, caused by the hemibiotrophic fungus, Crinipellis perniciosa, exhibits a succession of symptoms that are caused by the biotrophic phase of the fungus. However, the study of this biotrophic phase is limited by its exclusive growth inside the plant or in the presence of callus. Here we report for the first time a method for the growth and maintenance of the biotrophic-like phase of C. perniciosa on a defined medium with metabolites found in the diseased tissues. Our results suggest that glycerol is a key carbon source for this interaction. This is a crucial achievement toward understanding the biology of this fungus during the infectious phase of WBD.


BMC Genomics | 2014

Genome and secretome analysis of the hemibiotrophic fungal pathogen, Moniliophthora roreri, which causes frosty pod rot disease of cacao: mechanisms of the biotrophic and necrotrophic phases.

Lyndel W. Meinhardt; Gustavo G.L. Costa; Daniela P.T. Thomazella; Paulo José Pereira Lima Teixeira; Marcelo Falsarella Carazzolle; Stephan C. Schuster; John E. Carlson; Mark J. Guiltinan; Piotr A. Mieczkowski; Andrew D. Farmer; Thiruvarangan Ramaraj; Jayne Crozier; Robert E. Davis; Jonathan Shao; Rachel L. Melnick; Gonçalo Amarante Guimarães Pereira; Bryan A. Bailey

BackgroundThe basidiomycete Moniliophthora roreri is the causal agent of Frosty pod rot (FPR) disease of cacao (Theobroma cacao), the source of chocolate, and FPR is one of the most destructive diseases of this important perennial crop in the Americas. This hemibiotroph infects only cacao pods and has an extended biotrophic phase lasting up to sixty days, culminating in plant necrosis and sporulation of the fungus without the formation of a basidiocarp.ResultsWe sequenced and assembled 52.3 Mb into 3,298 contigs that represent the M. roreri genome. Of the 17,920 predicted open reading frames (OFRs), 13,760 were validated by RNA-Seq. Using read count data from RNA sequencing of cacao pods at 30 and 60 days post infection, differential gene expression was estimated for the biotrophic and necrotrophic phases of this plant-pathogen interaction. The sequencing data were used to develop a genome based secretome for the infected pods. Of the 1,535 genes encoding putative secreted proteins, 1,355 were expressed in the biotrophic and necrotrophic phases. Analysis of the data revealed secretome gene expression that correlated with infection and intercellular growth in the biotrophic phase and invasive growth and plant cellular death in the necrotrophic phase.ConclusionsGenome sequencing and RNA-Seq was used to determine and validate the Moniliophthora roreri genome and secretome. High sequence identity between Moniliophthora roreri genes and Moniliophthora perniciosa genes supports the taxonomic relationship with Moniliophthora perniciosa and the relatedness of this fungus to other basidiomycetes. Analysis of RNA-Seq data from infected plant tissues revealed differentially expressed genes in the biotrophic and necrotrophic phases. The secreted protein genes that were upregulated in the biotrophic phase are primarily associated with breakdown of the intercellular matrix and modification of the fungal mycelia, possibly to mask the fungus from plant defenses. Based on the transcriptome data, the upregulated secreted proteins in the necrotrophic phase are hypothesized to be actively attacking the plant cell walls and plant cellular components resulting in necrosis. These genes are being used to develop a new understanding of how this disease interaction progresses and to identify potential targets to reduce the impact of this devastating disease.


Tree Genetics & Genomes | 2009

Molecular characterization of an international cacao collection using microsatellite markers.

Dapeng Zhang; Sue Mischke; Elizabeth S. Johnson; Wilbert Phillips-Mora; Lyndel W. Meinhardt

Plant germplasm collections invariably contain varying levels of genetic redundancy, which hinders the efficient conservation and utilization of plant germplasm. Reduction of genetic redundancies is an essential step to improve the accuracy and efficiency of genebank management. The present study targeted the assessment of genetic redundancy and genetic structure in an international cacao (Theobroma cacao L.) collection maintained in Costa Rica. A total of 688 cacao accessions maintained in this collection were genotyped with 15 simple sequence repeat (SSR) loci, using a capillary electrophoresis genotyping system. The SSR markers provided a high resolution among the accessions. Thirty-six synonymously labeled sets, involving 135 accessions were identified based on the matching of multilocus SSR profiles. After the elimination of synonymous sets, the level of redundancy caused by closely related accessions in the collection was assessed using a simulated sampling scheme that compared allelic diversity in different sample sizes. The result of the simulation suggested that a random sample of 113 accessions could capture 90% of the total allelic diversity in this collection. Principal Coordinate Analysis revealed that the Trinitario hybrids from Costa Rica shared a high similarity among groups as well as among individual accessions. The analysis of the genetic structure illustrated that the within-country/within-region difference accounted for 84.6% of the total molecular variation whereas the among-country/among-region difference accounted for 15.4%. The Brazilian germplasm contributed most to this collection in terms of total alleles and private alleles. The intercountry/interregion relationship by cluster analysis largely agreed with the geographical origin of each germplasm group and supported the hypothesis that the Upper Amazon region is the center of diversity for cacao. The results of the present study indicated that the CATIE International Cacao Collection contains a high level of genetic redundancy. It should be possible to rationalize this collection by reducing redundancy and ensuring optimal representation of the genetic diversity from distinct germplasm groups. The results also demonstrated that SSR markers, together with the statistical tools for individual identification and redundancy assessment, are technically practical and sufficiently informative to assist the management of a tropical plant germplasm collection.


Functional Plant Biology | 2004

Genetic control of lysine metabolism in maize endosperm mutants

Ricardo A. Azevedo; Catherine Damerval; Peter J. Lea; Jacques Landry; Cláudia M. Bellato; Lyndel W. Meinhardt; Martine Le Guilloux; Sonia Delhaye; Alejandro Toro; Salete A. Gaziola; Vanderlei A. Varisi; Priscila Lupino Gratão

The capacity of three maize endosperm opaque mutants (o10, o11 and o13) to accumulate soluble lysine in the seed in relation to their wildtype counterpart, W22+, was investigated. The W22o13 and W22o11 mutants exhibited 278% and 186% increases in soluble lysine, respectively, while for W22o10, a 36% decrease was observed, compared with the wildtype. A quantitative and qualitative study of the N constituents of the endosperm has been conducted and data obtained for the total protein, non-protein N, soluble amino acids, albumins / globulins, zeins and glutelins present in the seed of the mutants. Following 2D-PAGE, a total of 38 different forms of zein polypeptides were detected and considerable differences were noted between the three mutant lines. The metabolism of lysine was also studied by analysis of the enzymes aspartate kinase, homoserine dehydrogenase, lysine 2-oxoglutarate reductase and saccharopine dehydrogenase, which exhibited major changes in activity, depending on the genotype, suggesting that the mutant genes may have distinct regulatory activities.


Fungal Biology | 2003

Electrophoretic karyotype analysis of Crinipellis perniciosa, the causal agent of witches' broom disease of Theobroma cacao.

Johana Rincones; Lyndel W. Meinhardt; Benedicto de Campos Vidal; Gonçalo Amarante Guimarães Pereira

Pulse-field gel electrophoresis (PFGE) was used to determine the genome size and characterize karyotypic differences in isolates of the cacao biotype of Crinipellis perniciosa (C-biotype). The karyotype analysis of four isolates from Brazil revealed that this biotype could be divided into two genotypes: one presenting six chromosomal bands and the other presenting eight. The size of the chromosomes ranged from 2.7 to 5.3 Mb. The different genotypes correlate with telomere-based PCR analysis. The isolates with six chromosomal bands had two that appeared to be doublets, as shown by densitometric analysis, indicating that the haploid chromosome number for this biotype is eight. The size of the haploid genomes was estimated at approximately 30 Mb by both PFGE and Feulgen-image analysis. DNA hybridization revealed that the rDNA sequences are clustered on a single chromosome and these sequences were located on different chromosomes in an isolate dependent manner. This is the first report of genome size and chromosomal polymorphism for the C-biotype of C. perniciosa.


New Phytologist | 2012

The hemibiotrophic cacao pathogen Moniliophthora perniciosa depends on a mitochondrial alternative oxidase for biotrophic development

Daniela P.T. Thomazella; Paulo José Pereira Lima Teixeira; Halley C. Oliveira; Elzira Elisabeth Saviani; Johana Rincones; Isabella Macedo Toni; Osvaldo Reis; Odalys Garcia; Lyndel W. Meinhardt; Ione Salgado; Gonçalo Amarante Guimarães Pereira

The tropical pathogen Moniliophthora perniciosa causes witches’ broom disease in cacao. As a hemibiotrophic fungus, it initially colonizes the living host tissues (biotrophic phase), and later grows over the dead plant (necrotrophic phase). Little is known about the mechanisms that promote these distinct fungal phases or mediate the transition between them. An alternative oxidase gene (Mp-aox) was identified in the M. perniciosa genome and its expression was analyzed througout the fungal life cycle. In addition, the effects of inhibitors of the cytochrome-dependent respiratory chain (CRC) and alternative oxidase (AOX) were evaluated on the in vitro development of M. perniciosa. Larger numbers of Mp-aox transcripts were observed in the biotrophic hyphae, which accordingly showed elevated sensitivity to AOX inhibitors. More importantly, the inhibition of CRC prevented the transition from the biotrophic to the necrotrophic phase, and the combined use of a CRC and AOX inhibitor completely halted fungal growth. On the basis of these results, a novel mechanism is presented in which AOX plays a role in the biotrophic development of M. perniciosa and regulates the transition to its necrotrophic stage. Strikingly, this model correlates well with the infection strategy of animal pathogens, particularly Trypanosoma brucei, which uses AOX as a strategy for pathogenicity.


Brazilian Journal of Medical and Biological Research | 2005

Are high-lysine cereal crops still a challenge?

Renato Rodrigues Ferreira; Vanderlei A. Varisi; Lyndel W. Meinhardt; Peter J. Lea; Ricardo A. Azevedo

The essential amino acids lysine and threonine are synthesized in higher plants via a pathway starting with aspartate that also leads to the formation of methionine and isoleucine. Lysine is one of most limiting amino acids in plants consumed by humans and livestock. Recent genetic, molecular, and biochemical evidence suggests that lysine synthesis and catabolism are regulated by complex mechanisms. Early kinetic studies utilizing mutants and transgenic plants that over-accumulate lysine have indicated that the major step for the regulation of lysine biosynthesis is at the enzyme dihydrodipicolinate synthase. Despite this tight regulation, recent strong evidence indicates that lysine catabolism is also subject to control, particularly in cereal seeds. The challenge of producing crops with a high-lysine concentration in the seeds appeared to be in sight a few years ago. However, apart from the quality protein maize lines currently commercially available, the release of high-lysine crops has not yet occurred. We are left with the question, is the production of high-lysine crops still a challenge?


Journal of Molecular Evolution | 2010

Genes Acquired by Horizontal Transfer Are Potentially Involved in the Evolution of Phytopathogenicity in Moniliophthora perniciosa and Moniliophthora roreri , Two of the Major Pathogens of Cacao

Ricardo Augusto Tiburcio; Gustavo G.L. Costa; Marcelo Falsarella Carazzolle; Jorge Maurício Costa Mondego; Stephen C. Schuster; John E. Carlson; Mark J. Guiltinan; Bryan A. Bailey; Piotr A. Mieczkowski; Lyndel W. Meinhardt; Gonçalo Amarante Guimarães Pereira

Moniliophthora perniciosa and Moniliophthora roreri are phytopathogenic basidiomycete species that infect cacao causing two important diseases in this crop: “Witches’ Broom” and “Frosty Pod Rot”, respectively. The ability of species from this genus (Moniliophthora) to cause disease is exceptional in the family Marasmiaceae. Species in closely related genera including, Marasmius, Crinipellis, and Chaetocalathus, are mainly saprotrophs and are not known to cause disease. In this study, the possibility that this phytopathogenic lifestyle has been acquired by horizontal gene transfer (HGT) was investigated. A stringent genome comparison pipeline was used to identify potential genes that have been obtained by Moniliophthora through HGT. This search led to the identification of three genes: a metallo-dependent hydrolase (MDH), a mannitol phosphate dehydrogenase (MPDH), and a family of necrosis-inducing proteins (NEPs). Phylogenetic analysis of these genes suggests that Moniliophthora acquired NEPs from oomycetes, MDH from actinobacteria and MPDH from firmicutes. Based on the known gene functions and on previous studies of M. perniciosa infection and development, a correlation between gene acquisition and the evolution of the phytopathogenic genus Moniliophthora can be postulated.


Fitopatologia Brasileira | 2002

Telomere and microsatellite primers reveal diversity among Sclerotinia sclerotiorum isolates from Brazil

Lyndel W. Meinhardt; Nelson A. Wulff; Cláudia M. Bellato; Siu Mui Tsai

Sclerotinia sclerotiorum, the causal agent of white mold, is a problem of winter bean (Phaseolus vulgaris) production in Brazil under center-pivot irrigation. Isolates of S. sclerotiorum were obtained from a center-pivot-irrigated field near Guaira-SP, Brazil. Mycelial compatibility group (MCG) studies revealed the presence of only two MCG. PCR/RFLP analysis of the ITS1-5.8S-ITS2 ribosomal subunit regions of these field isolates of S. sclerotiorum failed to show any genetic differences between these two MCGs. DNA amplification with a chromosomal telomere sequence-based primer and one microsatellite primer revealed genetic polymorphisms among isolates within the same MCG. Isolates taken from beans and two other crops from another region of Brazil showed the same two MCG and had identical banding patterns for the telomere and microsatellite primers. These findings support the use of telomere sequence-based primers for revealing genotypic differences among S. sclerotiorum isolates.


Horticulture research | 2014

Varietal identification of tea (Camellia sinensis) using nanofluidic array of single nucleotide polymorphism (SNP) markers.

Wanping Fang; Lyndel W. Meinhardt; Hua-Wei Tan; Lin Zhou; Sue Mischke; Dapeng Zhang

Apart from water, tea is the world’s most widely consumed beverage. Tea is produced in more than 50 countries with an annual production of approximately 4.7 million tons. The market segment for specialty tea has been expanding rapidly owing to increased demand, resulting in higher revenues and profits for tea growers and the industry. Accurate varietal identification is critically important to ensure traceability and authentication of premium tea products, which in turn contribute to on-farm conservation of tea genetic diversity. Using a set of single nucleotide polymorphism (SNP) markers developed from the expressed sequence tag (EST) database of Camilla senensis, we genotyped deoxyribonucleic acid (DNA) samples extracted from a diverse group of tea varieties, including both fresh and processed commercial loose-leaf teas. The validation led to the designation of 60 SNPs that unambiguously identified all 40 tested tea varieties with high statistical rigor (p<0.0001). Varietal authenticity and genetic relationships among the analyzed cultivars were further characterized by ordination and Bayesian clustering analysis. These SNP markers, in combination with a high-throughput genotyping protocol, effectively established and verified specific DNA fingerprints for all tested tea varieties. This method provides a powerful tool for variety authentication and quality control for the tea industry. It is also highly useful for the management of tea genetic resources and breeding, where accurate and efficient genotype identification is essential.

Collaboration


Dive into the Lyndel W. Meinhardt's collaboration.

Top Co-Authors

Avatar

Dapeng Zhang

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Bryan A. Bailey

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Sue Mischke

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lambert A. Motilal

University of the West Indies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shahin S. Ali

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Mary D. Strem

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Johana Rincones

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar

Ricardo A. Azevedo

State University of Campinas

View shared research outputs
Researchain Logo
Decentralizing Knowledge