Lynn A. Litterer
University of Minnesota
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lynn A. Litterer.
Archives of Biochemistry and Biophysics | 1990
James R. Mickelson; Lynn A. Litterer; Blake A. Jacobson; Charles F. Louis
When compared to normal pig sarcoplasmic reticulum (SR), SR from malignant hyperthermia susceptible (MHS) porcine skeletal muscle has been shown to exhibit an increased rate of calcium release, as well as alterations in [3H]ryanodine-binding activity in the presence of microM Ca2+ (Mickelson et al., 1988, J. Biol. Chem. 263, 9310). In the present study, various stimulators (adenine nucleotides and caffeine) and inhibitors (ruthenium red and Mg2+) of the SR calcium release channel were examined for effects on MHS and normal SR [3H]ryanodine binding. The apparent affinity of the MHS SR receptor for ryanodine in the presence of 10 mM ATP (Kd = 6.0 nM) or 10 mM caffeine (Kd = 28 nM) was significantly greater than that of the normal SR (Kd = 8.5 and 65 nM in 10 mM ATP or caffeine, respectively), the Bmax (12-16 pmol/mg) was similar in all cases. The Ca2+(0.5) for inhibition of [3H]ryanodine binding in the presence of 5 mM AMPPNP (238 vs 74 microM for MHS and normal SR, respectively) and the Ca2+(0.5) for stimulation of [3H]ryanodine binding in the presence of 5 mM caffeine (0.049 vs 0.070 microM for MHS and normal SR, respectively) were also significantly different. Furthermore, in the presence of optimal Ca2+, MHS SR [3H]ryanodine binding was more sensitive to caffeine stimulation (C0.5 of 1.7 vs 3.4 mM) and was less sensitive to ruthenium red (C0.5 of 1.9 vs 1.2 microM) or Mg2+ inhibition (C0.5 of 0.34 vs 0.21 mM) than was normal SR. These results further support the hypothesis that differences in the ryanodine/receptor calcium release channel regulatory properties are responsible for the abnormal calcium releasing activity of MHS SR.
Applied Biochemistry and Biotechnology | 2004
Deborah A. Samac; Lynn A. Litterer; Glena Temple; Hans-Joachim G. Jung; David A. Somers
The primary cell-wall matrix of most higher plants is composed of large amounts of uronic acids, primarily d-galacturonic acid residues in the back-bone of pectic polysaccharides. Uridine diphosphate (UDP)-glucose dehydrogenase is a key enzyme in the biosynthesis of uronic acids. We produced transgenic alfalfa (Medicago sativa) plants expressing a soybean UDP-glucose dehydrogenase cDNA under the control of two promoters active in alfalfa vascular tissues. In initial greenhouse experiments, enzyme activity in transgenic lines was up to seven-fold greater than in nontransformed control plants; however, field-grown transgenic plants had only a maximum of 1.9-fold more activity than the control. Cell-wall polysaccharide content was lower and Klason lignin content was higher in transgenics compared to the nontransformed control. No significant increase in pectin or uronic acids in the polysaccharide fraction was observed in any line. Xylose increased 15% in most transgenic lines and mannose concentration decreased slightly in all lines. Because of the complexity of pectic polysaccharides and sugar biosynthesis, it may be necessary to manipulate multiple steps in carbohydrate metabolism to alter the pectin content of alfalfa.
Anesthesiology | 1995
Bradley R. Fruen; James R. Mickelson; Timothy J. Roghair; Lynn A. Litterer; Charles F. Louis
BACKGROUND The effects of inhalation anesthetics on Ca2+ regulation in malignant hyperthermia-susceptible skeletal muscle are considered to be responsible for triggering malignant hyperthermia. The intravenous anesthetic propofol does not trigger malignant hyperthermia in susceptible patients or experimental animals, suggesting that there are important differences between the effects of propofol and the effects of inhalation anesthetics on Ca2+ regulation in malignant hyperthermia-susceptible muscle. Understanding these differences may help to clarify the mechanisms responsible for triggering malignant hyperthermia. METHODS To investigate the effects of propofol on Ca2+ regulation by malignant hyperthermia-susceptible skeletal muscle, we determined its effects on the membrane channels and pumps that control myoplasmic Ca2+ concentrations: the sarcoplasmic reticulum ryanodine receptor, the transverse tubule dihydropyridine receptor, and the sarcoplasmic reticulum Ca(2+)-adenosine triphosphatase (Ca(2+)-ATPase). Terminal cisternae-derived sarcoplasmic reticulum vesicles enriched in the junctional proteins of the sarcoplasmic reticulum and the transverse tubule membranes were isolated from the muscle of malignant hyperthermia-susceptible and normal pigs. Ca2+ flux, Ca(2+)-ATPase, and ligand binding measurements on these isolated vesicle preparations were performed in the presence of varying propofol concentrations. RESULTS Propofol (10-500 microM) had no effect on ryanodine receptor-mediated Ca2+ efflux from muscle membrane vesicles. Propofol (1-100 microM) also had no effect on sarcoplasmic reticulum vesicle [3H]ryanodine binding, whereas higher concentrations (200-300 microM) slightly inhibited [3H]ryanodine binding. Binding of the dihydropyridine receptor Ca2+ channel blocker [3H]PN200-110 to these preparations was inhibited by propofol (10-300 microM). Ca(2+)-ATPase activity was stimulated by 10-100 microM propofol but was inhibited by higher concentrations. In all cases, the effects of propofol on malignant hyperthermia-susceptible and normal membrane preparations were similar. CONCLUSIONS In contrast to malignant hyperthermia-triggering inhalation anesthetics, propofol does not stimulate malignant hyperthermia-susceptible or normal ryanodine receptor channel activity, even at > 100 times clinical concentrations. Effects on dihydropyridine receptor and Ca(2+)-ATPase function, however, are similar to the effects of inhalation anesthestics and require much lower concentrations of propofol. These findings, demonstrating that propofol does not activate ryanodine receptor Ca2+ channels, suggest a plausible explanation for why propofol does not trigger malignant hyperthermia in susceptible persons.
FEBS Letters | 1992
Janies R. Mickelson; C. Michael Knudson; Catharine F.H. Kennedy; Ding-I Yang; Lynn A. Litterer; William E. Rempel; Kevin P. Campbell; Charles F. Louis
The skeletal muscle ryanodine receptor of malignant hyperthermia‐susceptible (MHS) pigs contains a mutation at residue 615 that is highly correlated with various abnormalities in the regulation of sarcoplasmic reticulum (SR) Ca2+ channel activity. In isolated SR membranes the Arg615 to Cys615 ryanodine receptor mutation is now shown to be directly responsible for an altered tryptic peptide map, due to the elimination of the Arg615 cleavage site. Furthermore, trypsin treatment released 86–99 kDa ryanodine receptor fragments encompassing residue 615 from the SR membranes. We conclude that the 86–99 kDa domain containing residue 615 is near the cytoplasmic surface of the ryanodine receptor and likely near important Ca2+ channel regulatory sites.
Journal of Biological Chemistry | 1988
James R. Mickelson; Esther M. Gallant; Lynn A. Litterer; K. M. Johnson; William E. Rempel; Charles F. Louis
American Journal of Physiology-cell Physiology | 1993
Nirah H. Shomer; Charles F. Louis; Michael Fill; Lynn A. Litterer; James R. Mickelson
Plant Physiology and Biochemistry | 2006
Lynn A. Litterer; Judy A. Schnurr; Kathryn L. Plaisance; Kathleen K. Storey; John W. Gronwald; David A. Somers
American Journal of Physiology-cell Physiology | 1989
James R. Mickelson; Esther M. Gallant; William E. Rempel; K. M. Johnson; Lynn A. Litterer; B. A. Jacobson; Charles F. Louis
Physiologia Plantarum | 2006
Lynn A. Litterer; Kathryn L. Plaisance; Judy A. Schnurr; Kathleen K. Storey; Hans-Joachim G. Jung; John W. Gronwald; David A. Somers
American Journal of Physiology-cell Physiology | 1994
James R. Mickelson; James M. Ervasti; Lynn A. Litterer; Kevin P. Campbell; Charles F. Louis