Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lynn K. Barrett is active.

Publication


Featured researches published by Lynn K. Barrett.


PLOS ONE | 2013

Combining functional and structural genomics to sample the essential Burkholderia structome.

Loren Baugh; Larry A. Gallagher; Rapatbhorn Patrapuvich; Matthew C. Clifton; Anna S. Gardberg; Thomas E. Edwards; Brianna Armour; Darren W. Begley; Shellie H. Dieterich; David M. Dranow; Jan Abendroth; James W. Fairman; David Fox; Bart L. Staker; Isabelle Phan; Angela K. Gillespie; Ryan Choi; Steve Nakazawa-Hewitt; Mary Trang Nguyen; Alberto J. Napuli; Lynn K. Barrett; Garry W. Buchko; Robin Stacy; Peter J. Myler; Lance J. Stewart; Colin Manoil; Wesley C. Van Voorhis

Background The genus Burkholderia includes pathogenic gram-negative bacteria that cause melioidosis, glanders, and pulmonary infections of patients with cancer and cystic fibrosis. Drug resistance has made development of new antimicrobials critical. Many approaches to discovering new antimicrobials, such as structure-based drug design and whole cell phenotypic screens followed by lead refinement, require high-resolution structures of proteins essential to the parasite. Methodology/Principal Findings We experimentally identified 406 putative essential genes in B. thailandensis, a low-virulence species phylogenetically similar to B. pseudomallei, the causative agent of melioidosis, using saturation-level transposon mutagenesis and next-generation sequencing (Tn-seq). We selected 315 protein products of these genes based on structure-determination criteria, such as excluding very large and/or integral membrane proteins, and entered them into the Seattle Structural Genomics Center for Infection Disease (SSGCID) structure determination pipeline. To maximize structural coverage of these targets, we applied an “ortholog rescue” strategy for those producing insoluble or difficult to crystallize proteins, resulting in the addition of 387 orthologs (or paralogs) from seven other Burkholderia species into the SSGCID pipeline. This structural genomics approach yielded structures from 31 putative essential targets from B. thailandensis, and 25 orthologs from other Burkholderia species, yielding an overall structural coverage for 49 of the 406 essential gene families, with a total of 88 depositions into the Protein Data Bank. Of these, 25 proteins have properties of a potential antimicrobial drug target i.e., no close human homolog, part of an essential metabolic pathway, and a deep binding pocket. We describe the structures of several potential drug targets in detail. Conclusions/Significance This collection of structures, solubility and experimental essentiality data provides a resource for development of drugs against infections and diseases caused by Burkholderia. All expression clones and proteins created in this study are freely available by request.


Journal of Bacteriology | 2000

Multiple Alleles of Treponema pallidum Repeat Gene D in Treponema pallidum Isolates

Arturo Centurion-Lara; Eileen S. Sun; Lynn K. Barrett; Christa Castro; Sheila A. Lukehart; Wesley C. Van Voorhis

Two new tprD alleles have been identified in Treponema pallidum: tprD2 is found in 7 of 12 T. pallidum subsp. pallidum isolates and 7 of 8 non-pallidum isolates, and tprD3 is found in one T. pallidum subsp. pertenue isolate. Antibodies against TprD2 are found in persons with syphilis, demonstrating that tprD2 is expressed during infection.


Transfusion | 2005

Leishmania inactivation in human pheresis platelets by a psoralen (amotosalen HCl) and long‐wavelength ultraviolet irradiation

Richard T. Eastman; Lynn K. Barrett; Kent Dupuis; Frederick S. Buckner; Wesley C. Van Voorhis

BACKGROUND: Leishmania spp. are protozoans that cause skin and visceral diseases. Leishmania are obligate intracellular parasites of mononuclear phagocytes and have been documented to be transmitted by blood transfusion.


Infection and Immunity | 2003

Antibody responses elicited against the Treponema pallidum repeat proteins differ during infection with different isolates of Treponema pallidum subsp. pallidum.

Brandon T. Leader; Karin Hevner; Barbara J. Molini; Lynn K. Barrett; Wesley C. Van Voorhis; Sheila A. Lukehart

ABSTRACT Variation in the expression of the different Tpr proteins in the syphilis spirochete, Treponema pallidum subsp. pallidum, may have important implications in its ability to evade host immune detection and cause persistent infection. In the present study we examined the pattern of antibody responsiveness to different Tpr members during infection with three isolates of T. pallidum. There was variability in the specificities and temporal patterns of reactivity of the antibodies elicited against the individual Tpr proteins, suggesting that isolates may express different repertoires of Tpr proteins during infection.


PLOS ONE | 2012

Stabilizing Additives Added during Cell Lysis Aid in the Solubilization of Recombinant Proteins

David J. Leibly; Trang Nhu Nguyen; Louis T. Kao; Stephen N. Hewitt; Lynn K. Barrett; Wesley C. Van Voorhis

Insoluble recombinant proteins are a major issue for both structural genomics and enzymology research. Greater than 30% of recombinant proteins expressed in Escherichia coli (E. coli) appear to be insoluble. The prevailing view is that insolubly expressed proteins cannot be easily solubilized, and are usually sequestered into inclusion bodies. However, we hypothesize that small molecules added during the cell lysis stage can yield soluble protein from insoluble protein previously screened without additives or ligands. We present a novel screening method that utilized 144 additive conditions to increase the solubility of recombinant proteins expressed in E. coli. These selected additives are natural ligands, detergents, salts, buffers, and chemicals that have been shown to increase the stability of proteins in vivo. We present the methods used for this additive solubility screen and detailed results for 41 potential drug target recombinant proteins from infectious organisms. Increased solubility was observed for 80% of the recombinant proteins during the primary and secondary screening of lysis with the additives; that is 33 of 41 target proteins had increased solubility compared with no additive controls. Eleven additives (trehalose, glycine betaine, mannitol, L-Arginine, potassium citrate, CuCl2, proline, xylitol, NDSB 201, CTAB and K2PO4) solubilized more than one of the 41 proteins; these additives can be easily screened to increase protein solubility. Large-scale purifications were attempted for 15 of the proteins using the additives identified and eight (40%) were prepared for crystallization trials during the first purification attempt. Thus, this protocol allowed us to recover about a third of seemingly insoluble proteins for crystallography and structure determination. If recombinant proteins are required in smaller quantities or less purity, the final success rate may be even higher.


Infection and Immunity | 2007

Quantitative analysis of tpr gene expression in Treponema pallidum isolates: Differences among isolates and correlation with T-cell responsiveness in experimental syphilis.

Lorenzo Giacani; Barbara J. Molini; Charmie Godornes; Lynn K. Barrett; Wesley C. Van Voorhis; Arturo Centurion-Lara; Sheila A. Lukehart

ABSTRACT Transcriptional analysis of the tpr genes in Treponema pallidum subsp. pallidum (referred to here as simply T. pallidum) has been limited to date, and yet the expression of members of this gene family is likely relevant to the pathogenesis of syphilis. Recently, immunological studies and semiquantitative mRNA analysis led to the hypothesis of the modulation of tpr gene transcription during infection and suggested that various strains of T. pallidum might differentially express these genes. In this study we developed a real-time amplification assay to quantify the tpr mRNAs with respect to the 47-kDa lipoprotein message and to compare transcript levels among four different strains of T. pallidum. In addition, we analyzed the lymphocyte responsiveness pattern toward the Tpr antigens in late experimental syphilis to identify tpr genes that had been expressed during the course of infection. The T-cell response has been implicated in clearance of treponemes from early lesions, and some of the Tprs were identified as strong targets of the cellular immune response. We show that message for many of the tpr genes can be detected in treponemes harvested at the peak of early infection. Interestingly, tprK seems to be preferentially expressed in almost every strain, and it is uniformly the target of the strongest cellular immune response. These studies demonstrate the differential expression of certain tpr genes among strains of T. pallidum, and further studies are needed to explore the relationship between tpr gene expression and the clinical course of syphilis in infected individuals.


Journal of Clinical Microbiology | 2003

Serodiagnosis of Syphilis: Antibodies to Recombinant Tp0453, Tp92, and Gpd Proteins Are Sensitive and Specific Indicators of Infection by Treponema pallidum

Wesley C. Van Voorhis; Lynn K. Barrett; Sheila A. Lukehart; Bruno Schmidt; Martin E. Schriefer; Caroline E. Cameron

ABSTRACT Syphilis serodiagnosis relies on a combination of nonspecific screening tests (antilipoidal antibodies) and Treponema pallidum-specific tests (anti-T. pallidum antibodies). We studied a group of six recombinant T. pallidum antigens for their sensitivities and specificities with sera from individuals with syphilis (n = 43), relapsing fever (n = 8), Lyme disease (n = 8), and leptospirosis (n = 9) and from uninfected individuals (n = 15). Three recombinant proteins, Tp0155, Tp0483, and Tp0751, demonstrated sensitivity values that ranged from 28 to 42%. In contrast, three other recombinant proteins exhibited the following sensitivity and specificity values: Tp0453, 100% sensitivity and 100% specificity; Tp92 (Tp0326), 98% sensitivity and 97% specificity; and Gpd (Tp0257), 91% sensitivity and 93% specificity. Tp0453, Tp92, and Gpd also were recognized by sera from individuals with early primary syphilis that were nonreactive with the antilipoidal Venereal Disease Research Laboratory test. The reactivities of syphilis patient sera with Tp0453, Tp92, and Gpd were proportional to the titers of these sera with the treponemal test MHA-TP (microhemagglutination assay for T. pallidum). Thus, the recombinant T. pallidum antigens Tp0453, Tp92, and Gpd show promise as diagnostic antigens in the enzyme-linked immunosorbent assay-based assay.


Journal of Medicinal Chemistry | 2016

Development of an Orally Available and Central Nervous System (CNS) Penetrant Toxoplasma gondii Calcium-Dependent Protein Kinase 1 (TgCDPK1) Inhibitor with Minimal Human Ether-a-go-go-Related Gene (hERG) Activity for the Treatment of Toxoplasmosis

Rama Subba Rao Vidadala; Kasey Rivas; Kayode K. Ojo; Matthew A. Hulverson; Jennifer A. Zambriski; Igor Bruzual; Tracey L. Schultz; Wenlin Huang; Zhongsheng Zhang; Suzanne Scheele; Amy E. DeRocher; Ryan Choi; Lynn K. Barrett; Latha Kallur Siddaramaiah; Wim G. J. Hol; Erkang Fan; Ethan A. Merritt; Marilyn Parsons; Gail M. Freiberg; Kennan Marsh; Dale J. Kempf; Vern B. Carruthers; Nina Isoherranen; J. Stone Doggett; Wesley C. Van Voorhis; Dustin J. Maly

New therapies are needed for the treatment of toxoplasmosis, which is a disease caused by the protozoan parasite Toxoplasma gondii. To this end, we previously developed a potent and selective inhibitor (compound 1) of Toxoplasma gondii calcium-dependent protein kinase 1 (TgCDPK1) that possesses antitoxoplasmosis activity in vitro and in vivo. Unfortunately, 1 has potent human ether-a-go-go-related gene (hERG) inhibitory activity, associated with long Q-T syndrome, and consequently presents a cardiotoxicity risk. Here, we describe the identification of an optimized TgCDPK1 inhibitor 32, which does not have a hERG liability and possesses a favorable pharmacokinetic profile in small and large animals. 32 is CNS-penetrant and highly effective in acute and latent mouse models of T. gondii infection, significantly reducing the amount of parasite in the brain, spleen, and peritoneal fluid and reducing brain cysts by >85%. These properties make 32 a promising lead for the development of a new antitoxoplasmosis therapy.


Parasitology | 2014

The gatekeeper residue and beyond: homologous calcium-dependent protein kinases as drug development targets for veterinarian Apicomplexa parasites.

Katelyn R. Keyloun; Molly C. Reid; Ryan Choi; Yifan Song; Anna M. W. Fox; Heidi Hillesland; Zhongsheng Zhang; Ramasubbarao Vidadala; Ethan A. Merritt; Audrey O.T. Lau; Dustin J. Maly; Erkang Fan; Lynn K. Barrett; Wesley C. Van Voorhis; Kayode K. Ojo

Specific roles of individual CDPKs vary, but in general they mediate essential biological functions necessary for parasite survival. A comparative analysis of the structure-activity relationships (SAR) of Neospora caninum, Eimeria tenella and Babesia bovis calcium-dependent protein kinases (CDPKs) together with those of Plasmodium falciparum, Cryptosporidium parvum and Toxoplasma gondii was performed by screening against 333 bumped kinase inhibitors (BKIs). Structural modelling and experimental data revealed that residues other than the gatekeeper influence compound-protein interactions resulting in distinct sensitivity profiles. We subsequently defined potential amino-acid structural influences within the ATP-binding cavity for each orthologue necessary for consideration in the development of broad-spectrum apicomplexan CDPK inhibitors. Although the BKI library was developed for specific inhibition of glycine gatekeeper CDPKs combined with low inhibition of threonine gatekeeper human SRC kinase, some library compounds exhibit activity against serine- or threonine-containing CDPKs. Divergent BKI sensitivity of CDPK homologues could be explained on the basis of differences in the size and orientation of the hydrophobic pocket and specific variation at other amino-acid positions within the ATP-binding cavity. In particular, BbCDPK4 and PfCDPK1 are sensitive to a larger fraction of compounds than EtCDPK1 despite the presence of a threonine gatekeeper in all three CDPKs.


Antimicrobial Agents and Chemotherapy | 2007

Efficacy, Pharmacokinetics, and Metabolism of Tetrahydroquinoline Inhibitors of Plasmodium falciparum Protein Farnesyltransferase

Wesley C. Van Voorhis; Kasey Rivas; Pravin Bendale; Laxman Nallan; Carolyn P. Hornéy; Lynn K. Barrett; Kevin D. Bauer; Brian P. Smart; Sudha Ankala; Oliver Hucke; Christophe L. M. J. Verlinde; Debopam Chakrabarti; Corey Strickland; Kohei Yokoyama; Frederick S. Buckner; Andrew D. Hamilton; David K. Williams; Louis J. Lombardo; David M. Floyd; Michael H. Gelb

ABSTRACT New antimalarials are urgently needed. We have shown that tetrahydroquinoline (THQ) protein farnesyltransferase (PFT) inhibitors (PFTIs) are effective against the Plasmodium falciparum PFT and are effective at killing P. falciparum in vitro. Previously described THQ PFTIs had limitations of poor oral bioavailability and rapid clearance from the circulation of rodents. In this paper, we validate both the Caco-2 cell permeability model for predicting THQ intestinal absorption and the in vitro liver microsome model for predicting THQ clearance in vivo. Incremental improvements in efficacy, oral absorption, and clearance rate were monitored by in vitro tests; and these tests were followed up with in vivo absorption, distribution, metabolism, and excretion studies. One compound, PB-93, achieved cure when it was given orally to P. berghei-infected rats every 8 h for a total of 72 h. However, PB-93 was rapidly cleared, and dosing every 12 h failed to cure the rats. Thus, the in vivo results corroborate the in vitro pharmacodynamics and demonstrate that 72 h of continuous high-level exposure to PFTIs is necessary to kill plasmodia. The metabolism of PB-93 was demonstrated by a novel technique that relied on double labeling with a radiolabel and heavy isotopes combined with radiometric liquid chromatography and mass spectrometry. The major liver microsome metabolite of PB-93 has the PFT Zn-binding N-methyl-imidazole removed; this metabolite is inactive in blocking PFT function. By solving the X-ray crystal structure of PB-93 bound to rat PFT, a model of PB-93 bound to malarial PFT was constructed. This model suggests areas of the THQ PFTIs that can be modified to retain efficacy and protect the Zn-binding N-methyl-imidazole from dealkylation.

Collaboration


Dive into the Lynn K. Barrett's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kayode K. Ojo

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Ryan Choi

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dustin J. Maly

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Erkang Fan

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Kasey Rivas

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge