Lynn Margaret Batten
University of Winnipeg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lynn Margaret Batten.
Discrete Mathematics | 1984
Lynn Margaret Batten
We characterize those functions that are the rank functions of closure spaces of finite rank. In case such a function is defined on a finite set, we are able to improve this characterization.
Geometriae Dedicata | 1989
Lynn Margaret Batten
We prove the following result. Let S be a Steiner triple system embedded in the projective plane П of order n, such that r=n+1, and such that there exists a line l of Π exterior to S. Let G be a collineation group of Π fixing S, fixing l and transitive on the blocks of S. Then n=3 and S=Π∖l=AG(2, 3), and G contains the group of translations of S with respect to l.
Journal of Geometry | 1981
Lynn Margaret Batten; Francis Buekenhout
RésuméLorigine de ce travail réside dans lobservation que le groupe de Higman-Sims possède une géométrie très proche de celle dune quadrique dindice de Witt deux, constituée de 100 points, de droites de 2 points et de cercles de 6 points. Notre but est de décrire un système daxiomes qui caractérise simultanément la géométrie des droites et des cercles des quadriques finies dindice deux et la “quadrique” de Higman-Sims.
Discrete Mathematics | 1989
Lynn Margaret Batten
We study Steiner systems which embed “in a minimal way” in projective planes, and consider connections between the automorphism group of the Steiner systems and corresponding planes. Under certain conditions we are able to show (see Theorem 2) that such Steiner systems are either blocking sets or maximal arcs.
Journal of Combinatorial Theory | 1988
Lynn Margaret Batten
Abstract Let S be a finite, planar, linear space of dimension n⩾3 such that (1) each line has q − 1, q, or q + 1 points; (2) in any subspace R, the number of lines on any point of R is (q dim R − 1) (q − 1) , where q⩾2. We prove that S embeds in a unique way in PG(n, q). If in addition S has at most qn points, it follows, using a result of Tallini, that S is the complement in PG(n, q) of a parabolic or hyperbolic quadric, a parabolic quadric plus a subspace of its nucleus space, a cone projecting from a PG(n − 3, q) a plane (q + 1)-arc plus a subspace of the PG(n − 2, q) joining the knot of the arc with the PG(n − 3, q), or a hyperplane along with a subspace of PG(n, q).
Geometriae Dedicata | 1978
Lynn Margaret Batten
Geometriae Dedicata | 1987
Lynn Margaret Batten
Geometriae Dedicata | 1978
Lynn Margaret Batten
Archiv der Mathematik | 1985
Lynn Margaret Batten; Sharad S. Sane
Journal of Geometry | 1987
Lynn Margaret Batten