Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lynn Riddell is active.

Publication


Featured researches published by Lynn Riddell.


AIDS | 2010

HIV-1 infection is characterized by profound depletion of CD161+ Th17 cells and gradual decline in regulatory T cells.

Andrew J. Prendergast; Julia G. Prado; Yu-Hoi Kang; Fabian Chen; Lynn Riddell; Graz Luzzi; Philip J. R. Goulder; Paul Klenerman

Objective:CD4+ T-cell depletion is central to HIV pathogenesis. However, the relative impact of HIV on Th17 and regulatory T cell (Treg) subsets remains unclear. CD161+ CD4 cells are a recently identified, gut-homing Th17 precursor population. The balance between pro-inflammatory Th17 and immunoregulatory Tregs may be critical in HIV pathogenesis. This study addressed changes in CD161+, Th17 and Treg subsets during untreated HIV infection. Methods:Peripheral blood mononuclear cells were isolated from HIV-infected and HIV-uninfected individuals and stained to characterize CD161+ CD4 cells, Th17 cells [by elaboration of interleukin (IL)-17A], Tregs (CD3+CD4+CD25hiFoxP3+ cells) and CD8 activation (CD38+/HLA-DR+ cells). In-vitro infectability of CD161+ and Th17 cells by HIV was assessed in healthy donor CD4 cells by intracellular p24 expression. Results:Peripheral blood Th17 cells were depleted 10-fold in HIV-infected, compared to HIV-uninfected individuals (P < 0.0001) across a range of disease stages, accompanied by a significant reduction of CD161+ T cells (P = 0.024). Both Th17 cells and CD161+ CD4+ T cells were permissive to HIV replication in vitro. Profound loss of Th17 cells before the onset of advanced disease contrasted with a gradual decline in absolute Tregs during HIV disease progression in untreated individuals followed longitudinally (R = 0.71, P = 0.003). Loss of Tregs was associated with increased immune activation (R = −0.33, P = 0.03). Conclusion:HIV-infected individuals showed profound loss of Th17 cells, which may impair mucosal immunity, and reduced CD161+ CD4 cells, which may limit Th17 reconstitution. A gradual decline in Tregs during disease progression was associated with increased immune activation.


Journal of Virology | 2010

Efficacious Early Antiviral Activity of HIV Gag- and Pol-Specific HLA-B*2705-Restricted CD8+ T Cells

Rebecca Payne; Henrik N. Kløverpris; Jonah B. Sacha; Zabrina L. Brumme; Chanson J. Brumme; Søren Buus; Stuart Sims; Stephen Hickling; Lynn Riddell; Fabian Chen; Graz Luzzi; Anne Edwards; Rodney E. Phillips; Julia G. Prado; Philip J. R. Goulder

ABSTRACT The association between HLA-B*2705 and the immune control of human immunodeficiency virus type 1 (HIV-1) has previously been linked to the targeting of the HLA-B*2705-restricted Gag epitope KRWIILGLNK (KK10) by CD8+ T cells. In order to better define the mechanisms of the HLA-B*2705 immune control of HIV, we first characterized the CD8+ T-cell responses of nine highly active antiretroviral therapy (HAART)-naïve B*2705-positive subjects. Unexpectedly, we observed a strong response to an HLA-B*2705-restricted Pol epitope, KRKGGIGGY (KY9), in 8/9 subjects. The magnitude of the KY9 response was only marginally lower than that of the KK10-specific response (median, 695 versus 867 spot-forming cells [SFC]/million peripheral blood mononuclear cells [PBMCs]; not significant [NS]), and viral escape mutants were observed in both KY9 and KK10, resulting from selection pressure driven by the respective CD8+ T-cell response. By comparing inhibitions of viral replication by CD8+ T cells specific for the Gag KK10, Pol KY9, and Vpr VL9 HLA-B*2705-restricted epitopes, we observed a consistent hierarchy of antiviral efficacy (Gag KK10 > Pol KY9 > Vpr VL9). This hierarchy was associated with early recognition of HIV-1-infected cells, within 6 h of infection, by KK10- and KY9-specific CD8+ T cells but not until 18 h postinfection by VL9-specific CD8+ T cells. There was no association between antiviral efficacy and proliferative capacity, cytotoxicity, polyfunctionality, or T-cell receptor (TCR) avidity. These data are consistent with previous studies indicating an important role for the B*2705-Gag KK10 response in the control of HIV but also suggest a previously unrecognized role played by the subdominant Pol-specific KY9 response in HLA-B*2705-mediated control of HIV and that the recognition of HIV-infected cells by CD8+ T cells early in the viral life cycle may be important for viral containment in HIV-infected individuals.


Journal of Virology | 2012

HLA-B*57 Micropolymorphism Shapes HLA Allele-Specific Epitope Immunogenicity, Selection Pressure, and HIV Immune Control

Henrik N. Kløverpris; Annette Stryhn; Mikkel Harndahl; M. van der Stok; Rebecca Payne; Philippa C. Matthews; Fabian Chen; Lynn Riddell; Bruce D. Walker; Thumbi Ndung'u; Søren Buus; Philip J. R. Goulder

ABSTRACT The genetic polymorphism that has the greatest impact on immune control of human immunodeficiency virus (HIV) infection is expression of HLA-B*57. Understanding of the mechanism for this strong effect remains incomplete. HLA-B*57 alleles and the closely related HLA-B*5801 are often grouped together because of their similar peptide-binding motifs and HIV disease outcome associations. However, we show here that the apparently small differences between HLA-B*57 alleles, termed HLA-B*57 micropolymorphisms, have a significant impact on immune control of HIV. In a study cohort of >2,000 HIV C-clade-infected subjects from southern Africa, HLA-B*5703 is associated with a lower viral-load set point than HLA-B*5702 and HLA-B*5801 (medians, 5,980, 15,190, and 19,000 HIV copies/ml plasma; P = 0.24 and P = 0.0005). In order to better understand these observed differences in HLA-B*57/5801-mediated immune control of HIV, we undertook, in a study of >1,000 C-clade-infected subjects, a comprehensive analysis of the epitopes presented by these 3 alleles and of the selection pressure imposed on HIV by each response. In contrast to previous studies, we show that each of these three HLA alleles is characterized both by unique CD8+ T-cell specificities and by clear-cut differences in selection pressure imposed on the virus by those responses. These studies comprehensively define for the first time the CD8+ T-cell responses and immune selection pressures for which these protective alleles are responsible. These findings are consistent with HLA class I alleles mediating effective immune control of HIV through the number of p24 Gag-specific CD8+ T-cell responses generated that can drive significant selection pressure on the virus.


Journal of Immunology | 2011

HLA-A*7401-mediated control of HIV viremia is independent of its linkage disequilibrium with HLA-B*5703.

Philippa C. Matthews; Emily Adland; Jennifer Listgarten; Alasdair Leslie; Nompumelelo Mkhwanazi; Jonathan M. Carlson; Mikkel Harndahl; Anette Stryhn; Rebecca Payne; Anthony Ogwu; Kuan-Hsiang Gary Huang; John Frater; P Paioni; Henrik N. Kløverpris; Pieter Jooste; Dominique Goedhals; Cloete van Vuuren; Dewald Steyn; Lynn Riddell; Fabian Chen; Graz Luzzi; Thambiah Balachandran; Thumbi Ndung’u; Søren Buus; Mary Carrington; Roger L. Shapiro; David Heckerman; Philip J. R. Goulder

The potential contribution of HLA-A alleles to viremic control in chronic HIV type 1 (HIV-1) infection has been relatively understudied compared with HLA-B. In these studies, we show that HLA-A*7401 is associated with favorable viremic control in extended southern African cohorts of >2100 C-clade–infected subjects. We present evidence that HLA-A*7401 operates an effect that is independent of HLA-B*5703, with which it is in linkage disequilibrium in some populations, to mediate lowered viremia. We describe a novel statistical approach to detecting additive effects between class I alleles in control of HIV-1 disease, highlighting improved viremic control in subjects with HLA-A*7401 combined with HLA-B*57. In common with HLA-B alleles that are associated with effective control of viremia, HLA-A*7401 presents highly targeted epitopes in several proteins, including Gag, Pol, Rev, and Nef, of which the Gag epitopes appear immunodominant. We identify eight novel putative HLA-A*7401–restricted epitopes, of which three have been defined to the optimal epitope. In common with HLA-B alleles linked with slow progression, viremic control through an HLA-A*7401–restricted response appears to be associated with the selection of escape mutants within Gag epitopes that reduce viral replicative capacity. These studies highlight the potentially important contribution of an HLA-A allele to immune control of HIV infection, which may have been concealed by a stronger effect mediated by an HLA-B allele with which it is in linkage disequilibrium. In addition, these studies identify a factor contributing to different HIV disease outcomes in individuals expressing HLA-B*5703.


Journal of Virology | 2012

HIV Control through a Single Nucleotide on the HLA-B Locus

Henrik N. Kløverpris; Mikkel Harndahl; Alasdair Leslie; Jonathan M. Carlson; Nasreen Ismail; M. van der Stok; Kuan-Hsiang Gary Huang; Fabian Chen; Lynn Riddell; Dewald Steyn; Dominique Goedhals; C. van Vuuren; John Frater; Bruce D. Walker; Mary Carrington; Thumbi Ndung'u; Søren Buus; Philip J. R. Goulder

ABSTRACT Genetic variation within the HLA-B locus has the strongest impact on HIV disease progression of any polymorphisms within the human genome. However, identifying the exact mechanism involved is complicated by several factors. HLA-Bw4 alleles provide ligands for NK cells and for CD8 T cells, and strong linkage disequilibrium between HLA class I alleles complicates the discrimination of individual HLA allelic effects from those of other HLA and non-HLA alleles on the same haplotype. Here, we exploit an experiment of nature involving two recently diverged HLA alleles, HLA-B*42:01 and HLA-B*42:02, which differ by only a single amino acid. Crucially, they occur primarily on identical HLA class I haplotypes and, as Bw6 alleles, do not act as NK cell ligands and are therefore largely unconfounded by other genetic factors. We show that in an outbred cohort (n = 2,093) of HIV C-clade-infected individuals, a single amino acid change at position 9 of the HLA-B molecule critically affects peptide binding and significantly alters the cytotoxic T lymphocyte (CTL) epitopes targeted, measured directly ex vivo by gamma interferon (IFN-γ) enzyme-linked immunospot (ELISPOT) assay (P = 2 × 10−10) and functionally through CTL escape mutation (P = 2 × 10−8). HLA-B*42:01, which presents multiple Gag epitopes, is associated with a 0.52 log10 lower viral-load set point than HLA-B*42:02 (P = 0.02), which presents no p24 Gag epitopes. The magnitude of this effect from a single amino acid difference in the HLA-A*30:01/B*42/Cw*17:01 haplotype is equivalent to 75% of that of HLA-B*57:03, the most protective HLA class I allele in this population. This naturally controlled experiment represents perhaps the clearest demonstration of the direct impact of a particular HIV-specific CTL on disease control.


PLOS ONE | 2013

Nef-Specific CD8+ T Cell Responses Contribute to HIV-1 Immune Control

Emily Adland; Jonathan M. Carlson; P Paioni; Henrik N. Kløverpris; Roger L. Shapiro; Anthony Ogwu; Lynn Riddell; Graz Luzzi; Fabian Chen; Thambiah Balachandran; David Heckerman; Anette Stryhn; Anne Edwards; Thumbi Ndung’u; Bruce D. Walker; Søren Buus; Philip J. R. Goulder; Philippa C. Matthews

Recent studies in the SIV-macaque model of HIV infection suggest that Nef-specific CD8+ T-cell responses may mediate highly effective immune control of viraemia. In HIV infection Nef recognition dominates in acute infection, but in large cohort studies of chronically infected subjects, breadth of T cell responses to Nef has not been correlated with significant viraemic control. Improved disease outcomes have instead been associated with targeting Gag and, in some cases, Pol. However analyses of the breadth of Nef-specific T cell responses have been confounded by the extreme immunogenicity and multiple epitope overlap within the central regions of Nef, making discrimination of distinct responses impossible via IFN-gamma ELISPOT assays. Thus an alternative approach to assess Nef as an immune target is needed. Here, we show in a cohort of >700 individuals with chronic C-clade infection that >50% of HLA-B-selected polymorphisms within Nef are associated with a predicted fitness cost to the virus, and that HLA-B alleles that successfully drive selection within Nef are those linked with lower viral loads. Furthermore, the specific CD8+ T cell epitopes that are restricted by protective HLA Class I alleles correspond substantially to effective SIV-specific epitopes in Nef. Distinguishing such individual HIV-specific responses within Nef requires specific peptide-MHC I tetramers. Overall, these data suggest that CD8+ T cell targeting of certain specific Nef epitopes contributes to HIV suppression. These data suggest that a re-evaluation of the potential use of Nef in HIV T-cell vaccine candidates would be justified.


PLOS ONE | 2015

Prevalence and Characteristics of Hepatitis B Virus (HBV) Coinfection among HIV-Positive Women in South Africa and Botswana

Philippa C. Matthews; Apostolos Beloukas; Amna Malik; Jonathan M. Carlson; Pieter Jooste; Anthony Ogwu; Roger L. Shapiro; Lynn Riddell; Fabian Chen; Graz Luzzi; Manjeetha Jaggernath; Gerald Jesuthasan; Katie Jeffery; Thumbi Ndung’u; Philip J. R. Goulder; Anna Maria Geretti; Paul Klenerman

There is progressive concern about the evolving burden of morbidity and mortality caused by coinfection with HIV-1 and hepatitis B virus (HBV) in sub-Saharan Africa, but the epidemiology and impact of this problem are not well defined. We therefore set out to assimilate more information about the nature of HBV/HIV coinfection in this region by undertaking a retrospective observational study of southern African adult women. We used samples from previously recruited HIV-1 positive women attending antenatal clinics in three settings in South Africa and Botswana (n = 950) and added a small cohort of HIV-negative antenatal South African women for comparison (n = 72). We tested for HBsAg and followed up HBsAg-positive samples by testing for HBeAg, HBV DNA, HBV genotype, presence of drug-resistance associated mutations (RAMs) and HDV. We identified HBsAg in 72 individuals (7% of the whole cohort), of whom 27% were HBeAg-positive, and the majority HBV genotypes A1 and A2. We did not detect any HDV coinfection. HBV prevalence was significantly different between geographically distinct cohorts, but did not differ according to HIV status. Among adults from South Africa, HBV/HIV coinfected patients had lower CD4+ T cell counts compared to those with HIV-monoinfection (p = 0.02), but this finding was not replicated in the cohort from Botswana. Overall, these data provide a snapshot of the coinfection problem at the heart of the HIV/HBV co-epidemic, and are important to inform public health policy, resource allocation, education, surveillance and clinical care.


International Journal of Std & Aids | 2007

Comparison of the effectiveness of commonly used clinic-based treatments for external genital warts

Jackie Sherrard; Lynn Riddell

We describe a prospective study designed to assess the effectiveness of the commonly used clinic-based treatments for genital warts individually and in combination. Patients presenting with new or recurrent genital warts were randomly allocated to one of five treatments on a weekly basis. The clinical endpoint was wart clearance or eight treatments, whichever occurred sooner. If there was not a good response by the eighth treatment, an alternate modality was offered. Four hundred and nine individuals were enrolled in the study. Almost no patients withdrew in any group due to adverse effects. Three-quarters of patients treated with podophyllin 25% and cryotherapy concurrently required only two treatments to clear their warts. All had clearance in less than eight treatments. Single therapy with either trichloracetic acid or podophyllin 25% resulted in longer time to wart clearance, and more persistent warts.


Journal of Immunology | 2015

CD8+ TCR Bias and Immunodominance in HIV-1 Infection.

Henrik N. Kløverpris; Reuben McGregor; James Edward McLaren; Kristin Ladell; Mikkel Harndahl; Anette Stryhn; Jonathan M. Carlson; Catherine Koofhethile; Bram Gerritsen; Can Keşmir; Fabian Chen; Lynn Riddell; Graz Luzzi; Alasdair Leslie; Bruce D. Walker; Thumbi Ndung'u; Søren Buus; David A. Price; Philip J. R. Goulder

Immunodominance describes a phenomenon whereby the immune system consistently targets only a fraction of the available Ag pool derived from a given pathogen. In the case of CD8+ T cells, these constrained epitope-targeting patterns are linked to HLA class I expression and determine disease progression. Despite the biological importance of these predetermined response hierarchies, little is known about the factors that control immunodominance in vivo. In this study, we conducted an extensive analysis of CD8+ T cell responses restricted by a single HLA class I molecule to evaluate the mechanisms that contribute to epitope-targeting frequency and antiviral efficacy in HIV-1 infection. A clear immunodominance hierarchy was observed across 20 epitopes restricted by HLA-B*42:01, which is highly prevalent in populations of African origin. Moreover, in line with previous studies, Gag-specific responses and targeting breadth were associated with lower viral load set-points. However, peptide–HLA-B*42:01 binding affinity and stability were not significantly linked with targeting frequencies. Instead, immunodominance correlated with epitope-specific usage of public TCRs, defined as amino acid residue–identical TRB sequences that occur in multiple individuals. Collectively, these results provide important insights into a potential link between shared TCR recruitment, immunodominance, and antiviral efficacy in a major human infection.


AIDS | 2014

Programmed death-1 expression on HIV-1-specific CD8+ T cells is shaped by epitope specificity, T-cell receptor clonotype usage and antigen load.

Henrik N. Kløverpris; Reuben McGregor; James Edward McLaren; Kristin Ladell; Anette Stryhn; Catherine Koofhethile; Jacqui Brener; Fabian Chen; Lynn Riddell; Luzzi Graziano; Paul Klenerman; Alasdair Leslie; Søren Buus; David A. Price; Philip J. R. Goulder

Objectives:Although CD8+ T cells play a critical role in the control of HIV-1 infection, their antiviral efficacy can be limited by antigenic variation and immune exhaustion. The latter phenomenon is characterized by the upregulation of multiple inhibitory receptors, such as programmed death-1 (PD-1), CD244 and lymphocyte activation gene-3 (LAG-3), which modulate the functional capabilities of CD8+ T cells. Design and methods:Here, we used an array of different human leukocyte antigen (HLA)-B*15 : 03 and HLA-B*42 : 01 tetramers to characterize inhibitory receptor expression as a function of differentiation on HIV-1-specific CD8+ T-cell populations (n = 128) spanning 11 different epitope targets. Results:Expression levels of PD-1, but not CD244 or LAG-3, varied substantially across epitope specificities both within and between individuals. Differential expression of PD-1 on T-cell receptor (TCR) clonotypes within individual HIV-1-specific CD8+ T-cell populations was also apparent, independent of clonal dominance hierarchies. Positive correlations were detected between PD-1 expression and plasma viral load, which were reinforced by stratification for epitope sequence stability and dictated by effector memory CD8+ T cells. Conclusion:Collectively, these data suggest that PD-1 expression on HIV-1-specific CD8+ T cells tracks antigen load at the level of epitope specificity and TCR clonotype usage. These findings are important because they provide evidence that PD-1 expression levels are influenced by peptide/HLA class I antigen exposure.

Collaboration


Dive into the Lynn Riddell's collaboration.

Top Co-Authors

Avatar

Fabian Chen

Royal Berkshire Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Søren Buus

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Graz Luzzi

Wycombe General Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge