Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lynne A. Holtzclaw is active.

Publication


Featured researches published by Lynne A. Holtzclaw.


PLOS Genetics | 2007

Deletion at ITPR1 underlies ataxia in mice and spinocerebellar ataxia 15 in humans.

Joyce van de Leemput; Jayanth Chandran; Melanie A. Knight; Lynne A. Holtzclaw; Sonja W. Scholz; Mark R. Cookson; Henry Houlden; Katrina Gwinn-Hardy; Hon Chung Fung; Xian Lin; Dena Hernandez; Javier Simón-Sánchez; Nicholas W. Wood; Paola Giunti; Ian Rafferty; John Hardy; Elsdon Storey; R.J. McKinlay Gardner; Susan M. Forrest; Elizabeth M. C. Fisher; James T. Russell; Huaibin Cai; Andrew Singleton

We observed a severe autosomal recessive movement disorder in mice used within our laboratory. We pursued a series of experiments to define the genetic lesion underlying this disorder and to identify a cognate disease in humans with mutation at the same locus. Through linkage and sequence analysis we show here that this disorder is caused by a homozygous in-frame 18-bp deletion in Itpr1 (Itpr1Δ18/Δ18), encoding inositol 1,4,5-triphosphate receptor 1. A previously reported spontaneous Itpr1 mutation in mice causes a phenotype identical to that observed here. In both models in-frame deletion within Itpr1 leads to a decrease in the normally high level of Itpr1 expression in cerebellar Purkinje cells. Spinocerebellar ataxia 15 (SCA15), a human autosomal dominant disorder, maps to the genomic region containing ITPR1; however, to date no causal mutations had been identified. Because ataxia is a prominent feature in Itpr1 mutant mice, we performed a series of experiments to test the hypothesis that mutation at ITPR1 may be the cause of SCA15. We show here that heterozygous deletion of the 5′ part of the ITPR1 gene, encompassing exons 1–10, 1–40, and 1–44 in three studied families, underlies SCA15 in humans.


Glia | 2002

Astrocytes in adult rat brain express type 2 inositol 1,4,5-trisphosphate receptors.

Lynne A. Holtzclaw; Siddhesh Pandhit; Dan J. Bare; Gregory A. Mignery; James T. Russell

Astrocytes respond to neuronal activity by propagating Ca2+ waves elicited through the inositol 1,4,5‐trisphosphate pathway. We have previously shown that wave propagation is supported by specialized Ca2+ release sites, where a number of proteins, including inositol 1,4,5‐trisphosphate receptors (IP3R), occur together in patches. The specific IP3R isoform expressed by astrocytes in situ in rat brain is unknown. In the present report, we use isoform‐specific antibodies to localize immunohistochemically the IP3R subtype expressed in astrocytes in rat brain sections. Astrocytes were identified using antibodies against the astrocyte‐specific markers, S‐100β, or GFAP. Dual indirect immunohistochemistry showed that astrocytes in all regions of adult rat brain express only IP3R2. High‐resolution analysis showed that hippocampal astrocytes are endowed with a highly branched network of processes that bear fine hair‐like extensions containing punctate patches of IP3R2 staining in intimate contact with synapses. Such an organization is reminiscent of signaling microdomains found in cultured glial cells. Similarly, Bergmann glial cell processes in the cerebellum also contained fine hair‐like processes containing IP3R2 staining. The IP3R2‐containing fine terminal branches of astrocyte processes in both brain regions were found juxtaposed to presynaptic terminals containing synaptophysin as well as PSD 95‐containing postsynaptic densities. Corpus callosum astrocytes had an elongated morphology with IP3R2 studded processes extending along fiber tracts. Our data suggest that PLC‐mediated Ca2+ signaling in astrocytes in rat brain occurs predominantly through IP3R2 ion channels. Furthermore, the anatomical arrangement of the terminal astrocytic branches containing IP3R2 ensheathing synapses is ideal for supporting glial monitoring of neuronal activity. GLIA 39:69–84, 2002. Published 2002 Wiley‐Liss, Inc.


The Journal of Neuroscience | 2005

Metabotropic Glutamate Receptors and Dopamine Receptors Cooperate to Enhance Extracellular Signal-Regulated Kinase Phosphorylation in Striatal Neurons

Pamela J. Voulalas; Lynne A. Holtzclaw; Jennifer T. Wolstenholme; James T. Russell; Steven E. Hyman

Striatal medium spiny neurons are an important site of convergence for signaling mediated by the neurotransmitters dopamine and glutamate. We report that in striatal neurons in primary culture, signaling through group I metabotropic glutamate receptors (mGluRs) 1/5 and the D1 class of dopamine receptors (DRs) 1/5 converges to increase phosphorylation of the mitogen-activated protein kinase ERK2 (extracellular signal-regulated kinase 2). Induction of mitogen-activated protein kinase kinase-dependent signaling cascades by either mGluR1/5 or DR1/5 gave rise to increases in phosphorylation of ERK2. Coactivation of mGluR1/5 and DR1/5 with (S)-3,5-dihydroxyphenylglycine and (+)-1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,8-diol hydrochloride enhanced the phosphorylation of ERK2. This interaction between mGluR1/5 and DR1/5 required protein kinase C (PKC), because the PKC inhibitors calphostin C, bisindolylmaleimide I, and Gö6976 blocked DR1/5-enhanced phosphorylation of ERK2. Use of the phosphatase inhibitors calyculin and okadaic acid indicated that inhibition of protein phosphatases 1 and 2A dramatically enhanced ERK2 phosphorylation by mGluR1/5. Coactivation of mGluR1/5 and DR1/5 also enhanced cAMP-response element binding protein (CREB) phosphorylation (compared with each receptor agonist alone) but did not enhance CREB-mediated transcriptional activity. Thus, signal transduction pathways activated by DR1/5 and mGluR5 interact to modify downstream events in striatal neurons while retaining numerous regulatory checkpoints.


Journal of Neuroscience Methods | 2009

Transgenic mice expressing a cameleon fluorescent Ca2+ indicator in astrocytes and Schwann cells allow study of glial cell Ca2+ signals in situ and in vivo.

Stan D. Atkin; Sundip Patel; Ara Kocharyan; Lynne A. Holtzclaw; Susanna H. Weerth; Vincent Schram; James Pickel; James T. Russell

Glial cell Ca2+ signals play a key role in glial-neuronal and glial-glial network communication. Numerous studies have thus far utilized cell-permeant and injected Ca2+ indicator dyes to investigate glial Ca2+ signals in vitro and in situ. Genetically encoded fluorescent Ca2+ indicators have emerged as novel probes for investigating cellular Ca2+ signals. We have expressed one such indicator protein, the YC 3.60 cameleon, under the control of the S100beta promoter and directed its expression predominantly in astrocytes and Schwann cells. Expression of YC 3.60 extended into the entire cellular cytoplasmic compartment and the fine terminal processes of protoplasmic astrocytes and Schwann cell Cajal bands. In the brain, all the cells known to express S100beta in the adult or during development, expressed YC 3.60. While expression was most extensive in astrocytes, other glial cell types that express S100beta, such as NG2 and CNP-positive oligodendrocyte progenitor cells (OP cells), microglia, and some of the large motor neurons in the brain stem, also contained YC 3.60 fluorescence. Using a variety of known in situ and in vivo assays, we found that stimuli known to elicit Ca2+ signals in astrocytes caused substantial and rapid Ca2+ signals in the YC 3.60-expressing astrocytes. In addition, forepaw stimulation while imaging astrocytes through a cranial window in the somatosensory cortex in live mice, revealed robust evoked and spontaneous Ca2+ signals. These results, for the first time, show that genetically encoded reporter is capable of recording activity-dependent Ca2+ signals in the astrocyte processes, and networks.


Cell Calcium | 1995

A mathematical model of agonist-induced propagation of calcium waves in astrocytes

Bradley J. Roth; Sergey Yagodin; Lynne A. Holtzclaw; James T. Russell

In astrocytes, calcium signals evoked by neurotransmitters appear as waves within single cells, which spread to other cells in the network. Recent analysis has shown that waves are initiated at a single invariant site in the cell and propagated within the cell in a nonlinear and saltatory manner by regenerative amplification at specific predestined cellular sites. In order to gain insight into local cellular waves and wave collisions we have developed a mathematical model of cellular wave amplification loci. This model is in good agreement with experimental data which includes: ambient calcium gradients in resting cells, wave origination and local amplification and generation of local waves. As observed in experiments, the model also predicts that different locations in the cell can have different frequencies of oscillation. The amplification loci are thought to be specialized areas of the endoplasmic reticulum membrane containing a higher density or higher sensitivity of IP3 receptors. Our analysis suggests that the cellular loci act as weakly coupled oscillators each with its intrinsic latency and frequency of oscillation. Thus the appearance of the propagated calcium wave may be a reflection of these differences rather than an actual diffusional wave propagation.


Molecular and Cellular Biology | 1995

ets-1 in Astrocytes: Expression and Transmitter-Evoked Phosphorylation

Laurie F. Fleischman; Lynne A. Holtzclaw; James T. Russell; George Mavrothalassitis; Robert J. Fisher

The ets-1 protein has been primarily studied as a sequence-specific transcriptional regulator that is predominately expressed in lymphoid cells. In this report, we show that ets-1 is also expressed in astrocytes and astrocytoma cells and is regulated during both signal transduction and differentiation. Both isoforms of ets-1, p51 and p42, were found in astrocytes and astrocytoma cells, but whereas expression of p51 was strong, p42, the alternate splice product previously shown to lack the phosphorylation domain, was difficult to detect and was present at a level 10- to 40-fold lower than that of p51. This differed by roughly an order of magnitude from the ratio generally observable in T cells and thymocytes. In two astrocytoma lines of human origin, CCF and 1321N1, ets-1 phosphorylation was stimulated by bradykinin and carbachol, respectively. Glutamate, norepinephrine, and bradykinin elicited phosphorylation of p51 in cultures of primary rat type 1 astrocytes. ets-1 phosphorylation was dramatically blocked by KT5926, an inhibitor of myosin light-chain kinase, suggesting that this kinase may be involved in phosphorylation of ets-1 in vivo. Investigations of retinoic acid-induced differentiation in P19 cells provided further support for a strong correlation of ets-1 with the pathway for astrocyte differentiation.


NeuroImage | 2016

White matter microstructure from nonparametric axon diameter distribution mapping

Dan Benjamini; Michal E. Komlosh; Lynne A. Holtzclaw; Uri Nevo; Peter J. Basser

We report the development of a double diffusion encoding (DDE) MRI method to estimate and map the axon diameter distribution (ADD) within an imaging volume. A variety of biological processes, ranging from development to disease and trauma, may lead to changes in the ADD in the central and peripheral nervous systems. Unlike previously proposed methods, this ADD experimental design and estimation framework employs a more general, nonparametric approach, without a priori assumptions about the underlying form of the ADD, making it suitable to analyze abnormal tissue. In the current study, this framework was used on an ex vivo ferret spinal cord, while emphasizing the way in which the ADD can be weighted by either the number or the volume of the axons. The different weightings, which result in different spatial contrasts, were considered throughout this work. DDE data were analyzed to derive spatially resolved maps of average axon diameter, ADD variance, and extra-axonal volume fraction, along with a novel sub-micron restricted structures map. The morphological information contained in these maps was then used to segment white matter into distinct domains by using a proposed k-means clustering algorithm with spatial contiguity and left-right symmetry constraints, resulting in identifiable white matter tracks. The method was validated by comparing histological measures to the estimated ADDs using a quantitative similarity metric, resulting in good agreement. With further acquisition acceleration and experimental parameters adjustments, this ADD estimation framework could be first used preclinically, and eventually clinically, enabling a wide range of neuroimaging applications for improved understanding of neurodegenerative pathologies and assessing microstructural changes resulting from trauma.


PLOS ONE | 2018

Single-cell RNA sequencing of the mammalian pineal gland identifies two pinealocyte subtypes and cell type-specific daily patterns of gene expression

Joseph C. Mays; Michael C. Kelly; Steven L. Coon; Lynne A. Holtzclaw; Martin F. Rath; Matthew W. Kelley; David C. Klein

The vertebrate pineal gland is dedicated to the production of the hormone melatonin, which increases at night to influence circadian and seasonal rhythms. This increase is associated with dramatic changes in the pineal transcriptome. Here, single-cell analysis of the rat pineal transcriptome was approached by sequencing mRNA from ~17,000 individual pineal cells, with the goals of profiling the cells that comprise the pineal gland and examining the proposal that there are two distinct populations of pinealocytes differentiated by the expression of Asmt, which encodes the enzyme that converts N-acetylserotonin to melatonin. In addition, this analysis provides evidence of cell-specific time-of-day dependent changes in gene expression. Nine transcriptomically distinct cell types were identified: ~90% were classified as melatonin-producing α- and β-pinealocytes (1:19 ratio). Non-pinealocytes included three astrocyte subtypes, two microglia subtypes, vascular and leptomeningeal cells, and endothelial cells. α-Pinealocytes were distinguished from β-pinealocytes by ~3-fold higher levels of Asmt transcripts. In addition, α-pinealocytes have transcriptomic differences that likely enhance melatonin formation by increasing the availability of the Asmt cofactor S-adenosylmethionine, resulting from increased production of a precursor of S-adenosylmethionine, ATP. These transcriptomic differences include ~2-fold higher levels of the ATP-generating oxidative phosphorylation transcriptome and ~8-fold lower levels of the ribosome transcriptome, which is expected to reduce the consumption of ATP by protein synthesis. These findings suggest that α-pinealocytes have a specialized role in the pineal gland: efficiently O-methylating the N-acetylserotonin produced and released by β-pinealocytes, thereby improving the overall efficiency of melatonin synthesis. We have also identified transcriptomic changes that occur between night and day in seven cell types, the majority of which occur in β-pinealocytes and to a lesser degree in α-pinealocytes; many of these changes were mimicked by adrenergic stimulation with isoproterenol. The cellular heterogeneity of the pineal gland as revealed by this study provides a new framework for understanding pineal cell biology at single-cell resolution.


Microporous and Mesoporous Materials | 2017

Using double pulsed-field gradient MRI to study tissue microstructure in traumatic brain injury (TBI)

Michal E. Komlosh; Dan Benjamini; Elizabeth B. Hutchinson; Sarah King; Margalit Haber; Alexandru V. Avram; Lynne A. Holtzclaw; Abhishek Desai; Carlo Pierpaoli; Peter J. Basser

Double pulsed-field gradient (dPFG) MRI is proposed as a new sensitive tool to detect and characterize tissue microstructure following diffuse axonal injury. In this study dPFG MRI was used to estimate apparent mean axon diameter in a diffuse axonal injury animal model and in healthy fixed mouse brain. Histological analysis was used to verify the presence of the injury detected by MRI.


Journal of Neurobiology | 1994

Nonlinear propagation of agonist-induced cytoplasmic calcium waves in single astrocytes

Sergey Yagodin; Lynne A. Holtzclaw; Carol A. Sheppard; James T. Russell

Collaboration


Dive into the Lynne A. Holtzclaw's collaboration.

Top Co-Authors

Avatar

James T. Russell

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Sergey Yagodin

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Dan Benjamini

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Michal E. Komlosh

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Peter J. Basser

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Abhishek Desai

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Alexandru V. Avram

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Andrew Singleton

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ara Kocharyan

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge