Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lynne M. Mitchell is active.

Publication


Featured researches published by Lynne M. Mitchell.


Journal of Immunology | 2007

Properdin Can Initiate Complement Activation by Binding Specific Target Surfaces and Providing a Platform for De Novo Convertase Assembly

Dirk Spitzer; Lynne M. Mitchell; John P. Atkinson; Dennis E. Hourcade

Complement promotes the rapid recognition and elimination of pathogens, infected cells, and immune complexes. The biochemical basis for its target specificity is incompletely understood. In this report, we demonstrate that properdin can directly bind to microbial targets and provide a platform for the in situ assembly and function of the alternative pathway C3 convertases. This mechanism differs from the standard model wherein nascent C3b generated in the fluid phase attaches nonspecifically to its targets. Properdin-directed complement activation occurred on yeast cell walls (zymosan) and Neisseria gonorrhoeae. Properdin did not bind wild-type Escherichia coli, but it readily bound E. coli LPS mutants, and the properdin-binding capacity of each strain correlated with its respective serum-dependent AP activation rate. Moreover, properdin:single-chain Ab constructs were used to direct serum-dependent complement activation to novel targets. We conclude properdin participates in two distinct complement activation pathways: one that occurs by the standard model and one that proceeds by the properdin-directed model. The properdin-directed model is consistent with a proposal made by Pillemer and his colleagues >50 years ago.


Proceedings of the National Academy of Sciences of the United States of America | 2008

The complement protein properdin binds apoptotic T cells and promotes complement activation and phagocytosis

Claudia Kemper; Lynne M. Mitchell; Lijuan Zhang; Dennis E. Hourcade

Apoptotic cells must be rapidly eliminated to avoid harmful inflammatory and autoimmune reactions. Innate immunity is designed/poised to identify dying cells by their unique surface-associated molecular patterns. Here we demonstrate for the first time, to our knowledge, that the human complement protein properdin binds to early apoptotic T cells and initiates complement activation, leading to C3b opsonization and ingestion by phagocytic cells. Properdin binding was facilitated by the glycosaminoglycan chains of surface proteoglycans. Properdin released by activated neutrophils was particularly effective at recognition of apoptotic T cells, whereas the binding activity of properdin in the serum appeared to be inhibited. “Properdin tagging” of apoptotic T cells also induced their uptake by phagocytes independent of complement activation or other complement proteins. Although our findings were made primarily with apoptotic T cells, they suggest that properdin could play a similar role during apoptosis of other cell types.


Journal of Biological Chemistry | 2011

Variable antibody-dependent activation of complement by functionalized phospholipid nanoparticle surfaces

Christine T. N. Pham; Lynne M. Mitchell; Jennifer Huang; Christopher M. Lubniewski; Otto F. Schall; J. Kendall Killgore; Dipanjan Pan; Samuel A. Wickline; Gregory M. Lanza; Dennis E. Hourcade

A wide variety of nanomaterials are currently being developed for use in the detection and treatment of human diseases. However, there is no systematic way to measure and predict the action of such materials in biological contexts. Lipid-encapsulated nanoparticles (NPs) are a class of nanomaterials that includes the liposomes, the most widely used and clinically proven type of NPs. Liposomes can, however, activate the complement system, an important branch of innate immunity, resulting in undesirable consequences. Here, we describe the complement response to lipid-encapsulated NPs that are functionalized on the surface with various lipid-anchored gadolinium chelates. We developed a quantitative approach to examine the interaction of NPs with the complement system using in vitro assays and correlating these results with those obtained in an in vivo mouse model. Our results indicate that surface functionalization of NPs with certain chemical structures elicits swift complement activation that is initiated by a natural IgM antibody and propagated via the classical pathway. The intensity of the response is dependent on the chemical structures of the lipid-anchored chelates and not zeta potential effects alone. Moreover, the extent of complement activation may be tempered by complement inhibiting regulatory proteins that bind to the surface of NPs. These findings represent a step forward in the understanding of the interactions between nanomaterials and the host innate immune response and provide the basis for a systematic structure-activity relationship study to establish guidelines that are critical to the future development of biocompatible nanotherapeutics.


Journal of Clinical Investigation | 2013

Detection of complement activation using monoclonal antibodies against C3d

Joshua M. Thurman; Liudmila Kulik; Heather Orth; Maria Wong; Brandon Renner; Siranush A. Sargsyan; Lynne M. Mitchell; Dennis E. Hourcade; Jonathan P. Hannan; James M. Kovacs; Beth Coughlin; Alex Woodell; Matthew C. Pickering; Bärbel Rohrer; V. Michael Holers

During complement activation the C3 protein is cleaved, and C3 activation fragments are covalently fixed to tissues. Tissue-bound C3 fragments are a durable biomarker of tissue inflammation, and these fragments have been exploited as addressable binding ligands for targeted therapeutics and diagnostic agents. We have generated cross-reactive murine monoclonal antibodies against human and mouse C3d, the final C3 degradation fragment generated during complement activation. We developed 3 monoclonal antibodies (3d8b, 3d9a, and 3d29) that preferentially bind to the iC3b, C3dg, and C3d fragments in solution, but do not bind to intact C3 or C3b. The same 3 clones also bind to tissue-bound C3 activation fragments when injected systemically. Using mouse models of renal and ocular disease, we confirmed that, following systemic injection, the antibodies accumulated at sites of C3 fragment deposition within the glomerulus, the renal tubulointerstitium, and the posterior pole of the eye. To detect antibodies bound within the eye, we used optical imaging and observed accumulation of the antibodies within retinal lesions in a model of choroidal neovascularization (CNV). Our results demonstrate that imaging methods that use these antibodies may provide a sensitive means of detecting and monitoring complement activation-associated tissue inflammation.


Immunopharmacology | 1999

Decay acceleration of the complement alternative pathway C3 convertase

Dennis E. Hourcade; Lynne M. Mitchell; M. Edward Medof

An ELISA-based method is described for analyzing the mechanism by which the decay of the alternative pathway C3 convertase is accelerated by C3 regulatory proteins. Using this assay, we show that human decay-accelerating factor (DAF) and factor H are active on mature convertase complexes (C3bBb) but not on their nascent precursor (C3bB). This finding has implications on the mechanisms of action of these two regulators. The complement convertases cleave the serum protein C3, and the resulting C3b activation fragments covalently attach to nearby targets where they direct antigen selection, immune clearance, and cell lysis. Several proteins, including the membrane protein DAF, and the serum protein factor H, limit convertase activity by promoting their irreversible dissociation. An understanding of the biochemical mechanisms providing for their activities would be helpful for the therapeutic control of the complement response.


Journal of Biological Chemistry | 2003

A Corresponding Tyrosine Residue in the C2/Factor B Type A Domain Is a Hot Spot in the Decay Acceleration of the Complement C3 Convertases

Lisa A. Kuttner-Kondo; Megan P. Dybvig; Lynne M. Mitchell; Nasima Muqim; John P. Atkinson; M. Edward Medof; Dennis E. Hourcade

The cleavage of C3 by the C3 convertases (C3bBb and C4b2a) determines whether complement activation proceeds. Dissociation (decay acceleration) of these central enzymes by the regulators decay-accelerating factor (DAF), complement receptor 1 (CR1), factor H, and C4-binding protein (C4BP) controls their function. In a previous investigation, we obtained evidence implicating the α4/5 region of the type A domain of Bb (especially Tyr338) in decay acceleration of C3bBb and proposed this site as a potential interaction point with DAF and long homologous repeat A of CR1. Because portions of only two DAF complement control protein domains (CCPs), CCP2 and CCP3, are necessary to mediate its decay of the CP C3 convertase (as opposed to portions of at least three CCPs in all other cases, e.g. CCPs 1–3 of CR1), DAF/C4b2a provides the simplest structural model for this reaction. Therefore, we examined the importance of the C2 α4/5 site on decay acceleration of C4b2a. Functional C4b2a complexes made with the C2 Y327A mutant, the C2 homolog to factor B Y338A, were highly resistant to DAF, C4BP, and long homologous repeat A of CR1, whereas C2 substitutions in two nearby residues (N324A and L328A) resulted in partial resistance. Our new findings indicate that the α4/5 region of C2a is critical to decay acceleration mediated by DAF, C4BP, and CR1 and suggest that decay acceleration of C4b2a and C3bBb requires interaction of the convertase α4/5 region with a CCP2/CCP3 site of DAF or structurally homologous sites of CR1 and C4BP.


Journal of Biological Chemistry | 2007

Structure-based Mapping of DAF Active Site Residues That Accelerate the Decay of C3 Convertases

Lisa Kuttner-Kondo; Dennis E. Hourcade; Vernon E. Anderson; Nasima Muqim; Lynne M. Mitchell; Dinesh C. Soares; Paul N. Barlow; M. Edward Medof

Focused complement activation on foreign targets depends on regulatory proteins that decay the bimolecular C3 convertases. Although this process is central to complement control, how the convertases engage and disassemble is not established. The second and third complement control protein (CCP) modules of the cell surface regulator, decay-accelerating factor (DAF, CD55), comprise the simplest structure mediating this activity. Positioning the functional effects of 31 substitution mutants of DAF CCP2 to -4 on partial structures was previously reported. In light of the high resolution crystal structure of the DAF four-CCP functional region, we now reexamine the effects of these and 40 additional mutations. Moreover, we map six monoclonal antibody epitopes and overlap their effects with those of the amino acid substitutions. The data indicate that the interaction of DAF with the convertases is mediated predominantly by two patches ∼13Å apart, one centered around Arg69 and Arg96 on CCP2 and the other around Phe148 and Leu171 on CCP3. These patches on the same face of the adjacent modules bracket an intermodular linker of critical length (16Å). Although the key DAF residues in these patches are present or there are conservative substitutions in all other C3 convertase regulators that mediate decay acceleration and/or provide factor I-cofactor activity, the linker region is highly conserved only in the former. Intra-CCP regions also differ. Linker region comparisons suggest that the active CCPs of the decay accelerators are extended, whereas those of the cofactors are tilted. Intra-CCP comparisons suggest that the two classes of regulators bind different regions on their respective ligands.


Nanomedicine: Nanotechnology, Biology and Medicine | 2014

Application of a hemolysis assay for analysis of complement activation by perfluorocarbon nanoparticles

Christine T. N. Pham; Dennis G. Thomas; Julia A. Beiser; Lynne M. Mitchell; Jennifer Huang; Angana Senpan; Grace Hu; Mae O. Gordon; Nathan A. Baker; Dipanjan Pan; Gregory M. Lanza; Dennis E. Hourcade

UNLABELLED Nanoparticles offer new options for medical diagnosis and therapeutics with their capacity to specifically target cells and tissues with imaging agents and/or drug payloads. The unique physical aspects of nanoparticles present new challenges for this promising technology. Studies indicate that nanoparticles often elicit moderate to severe complement activation. Using human in vitro assays that corroborated the mouse in vivo results we previously presented mechanistic studies that define the pathway and key components involved in modulating complement interactions with several gadolinium-functionalized perfluorocarbon nanoparticles (PFOB). Here we employ a modified in vitro hemolysis-based assay developed in conjunction with the mouse in vivo model to broaden our analysis to include PFOBs of varying size, charge and surface chemistry and examine the variations in nanoparticle-mediated complement activity between individuals. This approach may provide the tools for an in-depth structure-activity relationship study that will guide the eventual development of biocompatible nanoparticles. FROM THE CLINICAL EDITOR Unique physical aspects of nanoparticles may lead to moderate to severe complement activation in vivo, which represents a challenge to clinical applicability. In order to guide the eventual development of biocompatible nanoparticles, this team of authors report a modified in vitro hemolysis-based assay developed in conjunction with their previously presented mouse model to enable in-depth structure-activity relationship studies.


Journal of Biological Chemistry | 1998

A Conserved Element in the Serine Protease Domain of Complement Factor B

Dennis E. Hourcade; Lynne M. Mitchell; Teresa J. Oglesby

Factor B and C2 are serine proteases that carry the catalytic sites of the complement C3 and C5 convertases. Their protease domains are activated by conformational changes that occur during convertase assembly and are deactivated upon convertase dissociation. Factor B and C2 share an 8-amino acid conserved sequence near their serine protease termini that is not seen in other serine proteases. To determine its importance, 24 factor B mutants were generated, each with a single amino acid substitution in this region. Whereas most mutants were functionally neutral, all five different substitutions of aspartic acid 715 and one phenylalanine 716 substitution severely reduced hemolytic activity. Several aspartic acid 715 mutants permitted the steps of convertase assembly including C3b-dependent factor D-mediated cleavage and activation of the high affinity C3b-binding site, but the resulting complexes did not cleave C3. Given that factor B and C2 share the same biological substrates and that part of the trypsin-like substrate specificity region is not apparent in either protein, we propose that the conserved region plays a critical role in the conformational regulation of the catalytic site and could offer a highly specific target for the therapeutic inhibition of complement.


Molecular Immunology | 2016

Anti-complement activity of the Ixodes scapularis salivary protein Salp20.

Dennis E. Hourcade; Antonina Akk; Lynne M. Mitchell; Hui-fang Zhou; Richard E. Hauhart; Christine T. N. Pham

Complement, a major component of innate immunity, presents a rapid and robust defense of the intravascular space. While regulatory proteins protect host cells from complement attack, when these measures fail, unrestrained complement activation may trigger self-tissue injury, leading to pathologic conditions. Of the three complement activation pathways, the alternative pathway (AP) in particular has been implicated in numerous disease and injury states. Consequently, the AP components represent attractive targets for therapeutic intervention. The common hard-bodied ticks from the family Ixodidae derive nourishment from the blood of their mammalian hosts. During its blood meal the tick is exposed to host immune effectors, including the complement system. In defense, the tick produces salivary proteins that can inhibit host immune functions. The Salp20 salivary protein of Ixodes scapularis inhibits the host AP pathway by binding properdin and dissociating C3bBbP, the active C3 convertase. In these studies we examined Salp20 activity in various complement-mediated pathologies. Our results indicate that Salp20 can inhibit AP-dependent pathogenesis in the mouse. Its efficacy may be part in due to synergic effects it provides with the endogenous AP regulator, factor H. While Salp20 itself would be expected to be highly immunogenic and therefore inappropriate for therapeutic use, its emergence speaks for the potential development of a non-immunogenic Salp20 mimic that replicates its anti-properdin activity.

Collaboration


Dive into the Lynne M. Mitchell's collaboration.

Top Co-Authors

Avatar

Dennis E. Hourcade

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

M. Edward Medof

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Christine T. N. Pham

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

John P. Atkinson

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Joshua M. Thurman

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Lisa Kuttner-Kondo

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alex Woodell

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Beth Coughlin

Medical University of South Carolina

View shared research outputs
Researchain Logo
Decentralizing Knowledge