Lynne-Marie Postovit
University of Alberta
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lynne-Marie Postovit.
Molecular Cancer Research | 2009
Timothy T. Li; Mistre Alemayehu; Adel I. Aziziyeh; Cynthia Pape; Macarena Pampillo; Lynne-Marie Postovit; Gordon B. Mills; Andy V. Babwah; Moshmi Bhattacharya
The lipid mediator lysophosphatidic acid (LPA) plays a role in cancer progression and signals via specific G protein–coupled receptors, LPA1-3. LPA has been shown to enhance the metastasis of breast carcinoma cells to bone. However, the mechanisms by which LPA receptors regulate breast cancer cell migration and invasion remain unclear. Breast cancer cell proliferation has been shown to be stimulated by Ral GTPases, a member of the Ras superfamily. Ral activity can be regulated by the multifunctional protein β-arrestin. We now show that HS578T and MDA-MB-231 breast cancer cells and MDA-MB-435 melanoma cells have higher expression of β-arrestin 1 mRNA compared with the nontumorigenic mammary MCF-10A cells. Moreover, we found that the mRNA levels of LPA1, LPA2, β-arrestin 2, and Ral GTPases are elevated in the advanced stages of breast cancer. LPA stimulates the migration and invasion of MDA-MB-231 cells, but not of MCF-10A cells, and this is mediated by pertussis toxin–sensitive G proteins and LPA1. However, ectopic expression of LPA1 in MCF-10A cells caused these cells to acquire an invasive phenotype. Gene knockdown of either β-arrestin or Ral proteins significantly impaired LPA-stimulated migration and invasion. Thus, our data show a novel role for β-arrestin/Ral signaling in mediating LPA-induced breast cancer cell migration and invasion, two important processes in metastasis. (Mol Cancer Res 2009;7(7):1064–77)
Nanoscale Research Letters | 2009
Jin Zhang; Lynne-Marie Postovit; Dashan Wang; R. B. Gardiner; Richard Harris; Mumin Md Abdul; Anu Thomas
Basic fibroblast growth factor (bFGF), a protein, plays a key role in wound healing and blood vessel regeneration. However, bFGF is easily degraded in biologic systems. Mesoporous silica nanoparticles (MSNs) with well-tailored porous structure have been used for hosting guest molecules for drug delivery. Here, we report an in situ route to load bFGF in MSNs for a prolonged release. The average diameter (d) of bFGF-loaded MSNs is 57 ± 8 nm produced by a water-in-oil microemulsion method. The in vitro releasing profile of bFGF from MSNs in phosphate buffer saline has been monitored for 20 days through a colorimetric enzyme linked immunosorbent assay. The loading efficiency of bFGF in MSNs is estimated at 72.5 ± 3%. In addition, the cytotoxicity test indicates that the MSNs are not toxic, even at a concentration of 50 μg/mL. It is expected that the in situ loading method makes the MSNs a new delivery system to deliver protein drugs, e.g. growth factors, to help blood vessel regeneration and potentiate greater angiogenesis.
Oncogene | 2014
Daniela F. Quail; Guihua Zhang; Scott D. Findlay; David A. Hess; Lynne-Marie Postovit
The progression of cancer from localized to invasive disease is requisite for metastasis, and is often characterized by epithelial-to-mesenchymal transition (EMT) and alterations in cellular adhesion and migration. Studies have shown that this transition is associated with an upregulation of embryonic stem cell-associated genes, resulting in a dedifferentiated phenotype and poor patient prognosis. Nodal is an embryonic factor that plays a critical role in promoting early invasive events during development. Nodal is silenced as stem cells differentiate; however, it re-emerges in adult life during placentation and mammary gland development, and is aberrantly expressed in many cancers. Here, we show that Nodal overexpression, in poorly invasive breast cancer and choriocarcinoma cells, causes increased invasion and migration in vitro. Furthermore, we show that Nodal overexpression in these epithelial cancer types induces an EMT-like event concomitant with the internalization of E-Cadherin. This ability of Nodal to promote cellular invasion and EMT-like phenomena is dependent upon the phosphorylation of ERK1/2. As Nodal normally signals through SMADs, these findings lend insight into an alternative pathway that is hijacked by this protein in cancer. To evaluate the clinical implications of our results, we show that Nodal inhibition reduces liver tumor burden in a model of spontaneous breast cancer metastasis in vivo, and that Nodal loss-of-function in aggressive breast cancer lines results in a decrease in invasive phenotypes. Our results demonstrate that Nodal is involved in promoting invasion in multiple cellular contexts, and that Nodal inhibition may be useful as a therapeutic target for patients with progressive disease.
PLOS ONE | 2012
Daniela F. Quail; Guihua Zhang; Logan A. Walsh; Gabrielle M. Siegers; Dylan Z. Dieters-Castator; Scott D. Findlay; Heather C. Broughton; David M. Putman; David A. Hess; Lynne-Marie Postovit
Breast cancers expressing human embryonic stem cell (hESC)-associated genes are more likely to progress than well-differentiated cancers and are thus associated with poor patient prognosis. Elevated proliferation and evasion of growth control are similarly associated with disease progression, and are classical hallmarks of cancer. In the current study we demonstrate that the hESC-associated factor Nodal promotes breast cancer growth. Specifically, we show that Nodal is elevated in aggressive MDA-MB-231, MDA-MB-468 and Hs578t human breast cancer cell lines, compared to poorly aggressive MCF-7 and T47D breast cancer cell lines. Nodal knockdown in aggressive breast cancer cells via shRNA reduces tumour incidence and significantly blunts tumour growth at primary sites. In vitro, using Trypan Blue exclusion assays, Western blot analysis of phosphorylated histone H3 and cleaved caspase-9, and real time RT-PCR analysis of BAX and BCL2 gene expression, we demonstrate that Nodal promotes expansion of breast cancer cells, likely via a combinatorial mechanism involving increased proliferation and decreased apopotosis. In an experimental model of metastasis using beta-glucuronidase (GUSB)-deficient NOD/SCID/mucopolysaccharidosis type VII (MPSVII) mice, we show that although Nodal is not required for the formation of small (<100 cells) micrometastases at secondary sites, it supports an elevated proliferation:apoptosis ratio (Ki67:TUNEL) in micrometastatic lesions. Indeed, at longer time points (8 weeks), we determined that Nodal is necessary for the subsequent development of macrometastatic lesions. Our findings demonstrate that Nodal supports tumour growth at primary and secondary sites by increasing the ratio of proliferation:apoptosis in breast cancer cells. As Nodal expression is relatively limited to embryonic systems and cancer, this study establishes Nodal as a potential tumour-specific target for the treatment of breast cancer.
PLOS ONE | 2016
Scott D. Findlay; Krista Vincent; Jennifer R. Berman; Lynne-Marie Postovit
The rapid adoption of gene editing tools such as CRISPRs and TALENs for research and eventually therapeutics necessitates assays that can rapidly detect and quantitate the desired alterations. Currently, the most commonly used assay employs “mismatch nucleases” T7E1 or “Surveyor” that recognize and cleave heteroduplexed DNA amplicons containing mismatched base-pairs. However, this assay is prone to false positives due to cancer-associated mutations and/or SNPs and requires large amounts of starting material. Here we describe a powerful alternative wherein droplet digital PCR (ddPCR) can be used to decipher homozygous from heterozygous mutations with superior levels of both precision and sensitivity. We use this assay to detect knockout inducing alterations to stem cell associated proteins, NODAL and SFRP1, generated using either TALENs or an “all-in-one” CRISPR/Cas plasmid that we have modified for one-step cloning and blue/white screening of transformants. Moreover, we highlight how ddPCR can be used to assess the efficiency of varying TALEN-based strategies. Collectively, this work highlights how ddPCR-based screening can be paired with CRISPR and TALEN technologies to enable sensitive, specific, and streamlined approaches to gene editing and validation.
Molecular Biology of the Cell | 2011
Daniela F. Quail; Meghan J. Taylor; Logan A. Walsh; Dylan Z. Dieters-Castator; Padmalaya Das; Michael Jewer; Guihua Zhang; Lynne-Marie Postovit
This study demonstrates that low oxygen (O2) levels induce the embryonic protein Nodal. This finding is significant, as low O2 levels characterize the microenvironments associated with both early development and tumor progression, and Nodal has been shown to promote tumorigenicity and to govern stem cell fate.
Molecular & Cellular Proteomics | 2012
Christopher Hughes; Lida Radan; Wing Y. Chang; William L. Stanford; Dean H. Betts; Lynne-Marie Postovit; Gilles A. Lajoie
The cellular microenvironment comprises soluble factors, support cells, and components of the extracellular matrix (ECM) that combine to regulate cellular behavior. Pluripotent stem cells utilize interactions between support cells and soluble factors in the microenvironment to assist in the maintenance of self-renewal and the process of differentiation. However, the ECM also plays a significant role in shaping the behavior of human pluripotent stem cells, including embryonic stem cells (hESCs) and induced pluripotent stem cells. Moreover, it has recently been observed that deposited factors in a hESC-conditioned matrix have the potential to contribute to the reprogramming of metastatic melanoma cells. Therefore, the ECM component of the pluripotent stem cell microenvironment necessitates further analysis. In this study we first compared the self-renewal and differentiation properties of hESCs grown on Matrigel™ pre-conditioned by hESCs to those on unconditioned Matrigel™. We determined that culture on conditioned Matrigel™ prevents differentiation when supportive growth factors are removed from the culture medium. To investigate and identify factors potentially responsible for this beneficial effect, we performed a defined SILAC MS-based proteomics screen of hESC-conditioned Matrigel™. From this proteomics screen, we identified over 80 extracellular proteins in matrix conditioned by hESCs and induced pluripotent stem cells. These included matrix-associated factors that participate in key stem cell pluripotency regulatory pathways, such as Nodal/Activin and canonical Wnt signaling. This work represents the first investigation of stem-cell-derived matrices from human pluripotent stem cells using a defined SILAC MS-based proteomics approach.
Breast Cancer Research | 2015
Krista Vincent; Scott D. Findlay; Lynne-Marie Postovit
IntroductionBreast cancer researchers use cell lines to model myriad phenomena ranging from DNA repair to cancer stem cell phenotypes. Though appropriate, and even requisite, for many studies, the suitability of cell lines as tumour models has come into question owing to possibilities of tissue culture artefacts and clonal selection. These issues are compounded by the inability of cancer cells grown in isolation to fully model the in situ tumour environment, which also contains a plethora of non-tumour cell types. It is thus important to understand similarities and differences between cancer cell lines and the tumours that they represent so that the optimal tumour models can be chosen to answer specific research questions.MethodsIn the present study, we compared the RNA-sequencing transcriptomes of a collection of breast cancer cell lines to transcriptomes obtained from hundreds of tumours using The Cancer Genome Atlas. Tumour purity was accounted for by analysis of stromal and immune scores using the ESTIMATE algorithm so that differences likely resulting from non-tumour cells could be accounted for.ResultsWe found the transcriptional characteristics of breast cancer cell lines to mirror those of the tumours. We identified basal and luminal cell lines that are most transcriptionally similar to their respective breast tumours. Our comparison of expression profiles revealed pronounced differences between breast cancer cell lines and tumours, which could largely be attributed to the absence of stromal and immune components in cell culture. A focus on the Wnt pathway revealed the transcriptional downregulation or absence of several secreted Wnt antagonists in culture. Gene set enrichment analysis suggests that cancer cell lines have enhanced proliferation and glycolysis independent of stromal and immune contributions compared with breast cancer cells in situ.ConclusionsThis study demonstrates that many of the differences between breast cancer cell lines and tumours are due to the absence of stromal and immune components in vitro. Hence, extra precautions should be taken when modelling extracellular proteins in vitro. The specific differences discovered emphasize the importance of choosing an appropriate model for each research question.
Journal of Cell Communication and Signaling | 2012
Michael Jewer; Scott D. Findlay; Lynne-Marie Postovit
The microenvironment acts as a conduit for cellular communication, delivering signals that direct development and sustain tissue homeostasis. In pathologies such as cancer, this integral function of the microenvironment is hijacked to support tumor growth and progression. Cells sense the microenvironment via signal transduction pathways culminating in altered gene expression. In addition to induced transcriptional changes, the microenvironment exerts its effect on the cell through regulation of post-transcriptional processes including alternative splicing and translational control. Here we describe how alternative splicing and protein translation are controlled by microenvironmental parameters such as oxygen availability. We also emphasize how these pathways can be utilized to support processes that are hallmarks of cancer such as angiogenesis, proliferation, and cell migration. We stress that cancer cells respond to their microenvironment through an integrated regulation of gene expression at multiple levels that collectively contribute to disease progression.
Journal of Investigative Dermatology | 2015
James Hutchenreuther; Krista Vincent; David E. Carter; Lynne-Marie Postovit; Andrew Leask
Metastatic melanoma has an extremely poor prognosis with few durable remissions. The secreted matricellular protein connective tissue growth factor (CCN2) is overexpressed in cancers including melanoma and may represent a viable therapeutic target. However, the mechanism underlying the contribution of CCN2 to melanoma progression is unclear. Herein, we use the highly metastatic murine melanoma cell line B16(F10) and syngeneic mice, in which CCN2 expression is knocked out in fibroblasts, to demonstrate that loss of CCN2, either in melanoma cells or in the niche, impedes the ability of melanoma cells to invade. Specifically, loss of CCN2 in melanoma cells diminished their ability to invade through collagen in vitro, and loss of fibroblast-derived CCN2 decreased spontaneous metastases of melanoma cells from the skin to the lungs in vivo. Proliferation and tumor growth were not affected by loss of CCN2. CCN2-deficient B16(F10) cells showed reduced expression of the matricellular protein periostin; addition of recombinant periostin rescued the in vitro invasion defect of these cells. Immunohistochemical analysis of CCN2-deficient mice confirmed loss of periostin expression in the absence of CCN2. CCN2 and periostin mRNA levels are positively correlated with each other and with the stromal composition of human melanoma lesions but not BRAF mutations. Thus, CCN2 promotes invasion and metastasis via periostin and should be further evaluated as a possible therapeutic target for BRAF inhibitor-resistant melanoma.