Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lynne Ramage is active.

Publication


Featured researches published by Lynne Ramage.


Diabetes | 2011

Novel Fat Depot–Specific Mechanisms Underlie Resistance to Visceral Obesity and Inflammation in 11β-Hydroxysteroid Dehydrogenase Type 1–Deficient Mice

Malgorzata Wamil; Jenny H. Battle; S. Turban; Tiina Kipari; David Seguret; Ricardo de Sousa Peixoto; Yvonne B. Nelson; D. Nowakowska; David A. Ferenbach; Lynne Ramage; Karen E. Chapman; Jeremy Hughes; Donald R. Dunbar; Jonathan R. Seckl; Nicholas M. Morton

OBJECTIVE The study objective was to determine the key early mechanisms underlying the beneficial redistribution, function, and inflammatory profile of adipose tissue in 11β-hydroxysteroid dehydrogenase type 1 knockout (11β-HSD1−/−) mice fed a high-fat (HF) diet. RESEARCH DESIGN AND METHODS By focusing on the earliest divergence in visceral adiposity, subcutaneous and visceral fat depots from 11β-HSD1−/− and C57Bl/6J control mice fed an HF diet for 4 weeks were used for comparative microarray analysis of gene expression, and differences were validated with real-time PCR. Key changes in metabolic signaling pathways were confirmed using Western blotting/immunoprecipitation, and fat cell size was compared with the respective chow-fed control groups. Altered adipose inflammatory cell content and function after 4 weeks (early) and 18 weeks (chronic) of HF feeding was investigated using fluorescence (and magnetic)-activated cell sorting analysis, immunohistochemistry, and in situ hybridization. RESULTS In subcutaneous fat, HF-fed 11β-HSD1−/− mice showed evidence of enhanced insulin and β-adrenergic signaling associated with accretion of smaller metabolically active adipocytes. In contrast, reduced 11β-HSD1−/− visceral fat accumulation was characterized by maintained AMP kinase activation, not insulin sensitization, and higher adipocyte interleukin-6 release. Intracellular glucocorticoid deficiency was unexpectedly associated with suppressed inflammatory signaling and lower adipocyte monocyte chemoattractant protein-1 secretion with strikingly reduced cytotoxic T-cell and macrophage infiltration, predominantly in visceral fat. CONCLUSIONS Our data define for the first time the novel and distinct depot-specific mechanisms driving healthier fat patterning and function as a result of reduced intra-adipose glucocorticoid levels.


Cell Metabolism | 2016

Glucocorticoids Acutely Increase Brown Adipose Tissue Activity in Humans, Revealing Species-Specific Differences in UCP-1 Regulation.

Lynne Ramage; Murat Akyol; Alison Fletcher; John L. R. Forsythe; Mark Nixon; Roderick N. Carter; Edwin Jacques Rudolph van Beek; Nicholas M. Morton; Brian R. Walker; Roland H. Stimson

Summary The discovery of brown adipose tissue (BAT) in adult humans presents a new therapeutic target for metabolic disease; however, little is known about the regulation of human BAT. Chronic glucocorticoid excess causes obesity in humans, and glucocorticoids suppress BAT activation in rodents. We tested whether glucocorticoids regulate BAT activity in humans. In vivo, the glucocorticoid prednisolone acutely increased 18fluorodeoxyglucose uptake by BAT (measured using PET/CT) in lean healthy men during mild cold exposure (16°C–17°C). In addition, prednisolone increased supraclavicular skin temperature (measured using infrared thermography) and energy expenditure during cold, but not warm, exposure in lean subjects. In vitro, glucocorticoids increased isoprenaline-stimulated respiration and UCP-1 in human primary brown adipocytes, but substantially decreased isoprenaline-stimulated respiration and UCP-1 in primary murine brown and beige adipocytes. The highly species-specific regulation of BAT function by glucocorticoids may have important implications for the translation of novel treatments to activate BAT to improve metabolic health.


PLOS ONE | 2011

A Stratified Transcriptomics Analysis of Polygenic Fat and Lean Mouse Adipose Tissues Identifies Novel Candidate Obesity Genes

Nicholas M. Morton; Yvonne B. Nelson; Zoi Michailidou; Emma M. Di Rollo; Lynne Ramage; Patrick W. F. Hadoke; Jonathan R. Seckl; L. Bünger; Simon Horvat; Christopher J. Kenyon; Donald R. Dunbar

Background Obesity and metabolic syndrome results from a complex interaction between genetic and environmental factors. In addition to brain-regulated processes, recent genome wide association studies have indicated that genes highly expressed in adipose tissue affect the distribution and function of fat and thus contribute to obesity. Using a stratified transcriptome gene enrichment approach we attempted to identify adipose tissue-specific obesity genes in the unique polygenic Fat (F) mouse strain generated by selective breeding over 60 generations for divergent adiposity from a comparator Lean (L) strain. Results To enrich for adipose tissue obesity genes a ‘snap-shot’ pooled-sample transcriptome comparison of key fat depots and non adipose tissues (muscle, liver, kidney) was performed. Known obesity quantitative trait loci (QTL) information for the model allowed us to further filter genes for increased likelihood of being causal or secondary for obesity. This successfully identified several genes previously linked to obesity (C1qr1, and Np3r) as positional QTL candidate genes elevated specifically in F line adipose tissue. A number of novel obesity candidate genes were also identified (Thbs1, Ppp1r3d, Tmepai, Trp53inp2, Ttc7b, Tuba1a, Fgf13, Fmr) that have inferred roles in fat cell function. Quantitative microarray analysis was then applied to the most phenotypically divergent adipose depot after exaggerating F and L strain differences with chronic high fat feeding which revealed a distinct gene expression profile of line, fat depot and diet-responsive inflammatory, angiogenic and metabolic pathways. Selected candidate genes Npr3 and Thbs1, as well as Gys2, a non-QTL gene that otherwise passed our enrichment criteria were characterised, revealing novel functional effects consistent with a contribution to obesity. Conclusions A focussed candidate gene enrichment strategy in the unique F and L model has identified novel adipose tissue-enriched genes contributing to obesity.


Diabetes | 2012

Optimal Elevation of β-Cell 11β-Hydroxysteroid Dehydrogenase Type 1 Is a Compensatory Mechanism that Prevents High Fat Diet–Induced β-Cell Failure

S. Turban; Xiaoxia Liu; Lynne Ramage; Scott P. Webster; Brian R. Walker; Donald R. Dunbar; John J. Mullins; Jonathan R. Seckl; Nicholas M. Morton

Type 2 diabetes ultimately results from pancreatic β-cell failure. Abnormally elevated intracellular regeneration of glucocorticoids by the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) in fat or liver may underlie pathophysiological aspects of the metabolic syndrome. Elevated 11β-HSD1 is also found in pancreatic islets of obese/diabetic rodents and is hypothesized to suppress insulin secretion and promote diabetes. To define the direct impact of elevated pancreatic β-cell 11β-HSD1 on insulin secretion, we generated β-cell–specific, 11β-HSD1–overexpressing (MIP-HSD1) mice on a strain background prone to β-cell failure. Unexpectedly, MIP-HSD1tg/+ mice exhibited a reversal of high fat–induced β-cell failure through augmentation of the number and intrinsic function of small islets in association with induction of heat shock, protein kinase A, and extracellular signal–related kinase and p21 signaling pathways. 11β-HSD1−/− mice showed mild β-cell impairment that was offset by improved glucose tolerance. The benefit of higher β-cell 11β-HSD1 exhibited a threshold because homozygous MIP-HSD1tg/tg mice and diabetic Lepdb/db mice with markedly elevated β-cell 11β-HSD1 levels had impaired basal β-cell function. Optimal elevation of β-cell 11β-HSD1 represents a novel biological mechanism supporting compensatory insulin hypersecretion rather than exacerbating metabolic disease. These findings have immediate significance for current therapeutic strategies for type 2 diabetes.


American Journal of Physiology-endocrinology and Metabolism | 2011

Dietary manipulation reveals an unexpected inverse relationship between fat mass and adipose 11β-hydroxysteroid dehydrogenase type 1.

Tak Yung Man; Zoi Michailidou; Adnan Gokcel; Lynne Ramage; Karen E. Chapman; Christopher J. Kenyon; Jonathan R. Seckl; Nicholas M. Morton

Increased dietary fat intake is associated with obesity, insulin resistance, and metabolic disease. In transgenic mice, adipose tissue-specific overexpression of the glucocorticoid-amplifying enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) exacerbates high-fat (HF) diet-induced visceral obesity and diabetes, whereas 11β-HSD1 gene knockout ameliorates this, favoring accumulation of fat in nonvisceral depots. Paradoxically, in normal mice HF diet-induced obesity (DIO) is associated with marked downregulation of adipose tissue 11β-HSD1 levels. To identify the specific dietary fats that regulate adipose 11β-HSD1 and thereby impact upon metabolic disease, we either fed mice diets enriched (45% calories as fat) in saturated (stearate), monounsaturated (oleate), or polyunsaturated (safflower oil) fats ad libitum or we pair fed them a low-fat (11%) control diet for 4 wk. Adipose and liver mass and glucocorticoid receptor and 11β-HSD1 mRNA and activity levels were determined. Stearate caused weight loss and hypoinsulinemia, partly due to malabsorption, and this markedly increased plasma corticosterone levels and adipose 11β-HSD1 activity. Oleate induced pronounced weight gain and hyperinsulinemia in association with markedly low plasma corticosterone and adipose 11β-HSD1 activity. Weight gain and hyperinsulinemia was less pronounced with safflower compared with oleate despite comparable suppression of plasma corticosterone and adipose 11β-HSD1. However, with pair feeding, safflower caused a selective reduction in visceral fat mass and relative insulin sensitization without affecting plasma corticosterone or adipose 11β-HSD1. The dynamic depot-selective relationship between adipose 11β-HSD1 and fat mass strongly implicates a dominant physiological role for local tissue glucocorticoid reactivation in fat mobilization.


Diabetes, Obesity and Metabolism | 2017

Acute physiological effects of glucocorticoids on fuel metabolism in humans are permissive but not direct

Roland H. Stimson; Anna Anderson; Lynne Ramage; David P. Macfarlane; Andrew de Beaux; Damian J. Mole; Ruth Andrew; Brian R. Walker

The effects of glucocorticoids on fuel metabolism are complex. Acute glucocorticoid excess promotes lipolysis but chronic glucocorticoid excess causes visceral fat accumulation. We hypothesized that interactions between cortisol and insulin and adrenaline account for these conflicting results. We tested the effect of cortisol on lipolysis and glucose production with and without insulin and adrenaline in humans both in vivo and in vitro.


Cell Metabolism | 2018

Substantial Metabolic Activity of Human Brown Adipose Tissue during Warm Conditions and Cold-Induced Lipolysis of Local Triglycerides

Graeme Weir; Lynne Ramage; Murat Akyol; Jonathan Rhodes; Catriona Kyle; Alison Fletcher; Thomas H. Craven; Sonia J. Wakelin; Amanda J. Drake; Maria-Lena Gregoriades; Ceri Ashton; Nick Weir; Edwin J. R. van Beek; Fredrik Karpe; Brian R. Walker; Roland H. Stimson

Summary Current understanding of in vivo human brown adipose tissue (BAT) physiology is limited by a reliance on positron emission tomography (PET)/computed tomography (CT) scanning, which has measured exogenous glucose and fatty acid uptake but not quantified endogenous substrate utilization by BAT. Six lean, healthy men underwent 18fluorodeoxyglucose-PET/CT scanning to localize BAT so microdialysis catheters could be inserted in supraclavicular BAT under CT guidance and in abdominal subcutaneous white adipose tissue (WAT). Arterial and dialysate samples were collected during warm (∼25°C) and cold exposure (∼17°C), and blood flow was measured by 133xenon washout. During warm conditions, there was increased glucose uptake and lactate release and decreased glycerol release by BAT compared with WAT. Cold exposure increased blood flow, glycerol release, and glucose and glutamate uptake only by BAT. This novel use of microdialysis reveals that human BAT is metabolically active during warm conditions. BAT activation substantially increases local lipolysis but also utilization of other substrates such as glutamate.


Frontiers in Endocrinology | 2014

β-Cell-Specific Glucocorticoid Reactivation Attenuates Inflammatory β-Cell Destruction

Xiaoxia Liu; Sophie Turban; Roderick N. Carter; Shakil Ahmad; Lynne Ramage; Scott P. Webster; Brian R. Walker; Jonathan R. Seckl; Nicholas Morton

Progression and severity of type 1 diabetes is dependent upon inflammatory induction of nitric oxide production and consequent pancreatic β-cell damage. Glucocorticoids (GCs) are highly effective anti-inflammatory agents but have been precluded in type 1 diabetes and in islet transplantation protocols because they exacerbated insulin resistance and suppressed β-cell insulin secretion at the high-doses employed clinically. In contrast, physiological-range elevation of GC action within β-cells ameliorated lipotoxic β-cell failure in transgenic mice overexpressing the intracellular enzyme 11β-hydroxysteroid dehydrogenase type 1 (MIP-HSD1tg/+ mice). Here, we tested the hypothesis that elevated β-cell 11beta-HSD1 protects against the β-cell destruction elicited by streptozotocin (STZ), a toxin that dose-dependently mimics aspects of inflammatory and autoimmune β-cell destruction. MIP-HSD1tg/+ mice exhibited an episodic protection from the severe hyperglycemia caused by a single high dose of STZ associated with higher and sustained β-cell survival, maintained β-cell replicative potential, higher plasma and islet insulin levels, reduced inflammatory macrophage infiltration and increased anti-inflammatory T regulatory cell content. MIP-HSD1tg/+ mice also completely resisted mild hyperglycemia and insulitis induced by multiple low-dose STZ administration. In vitro, MIP-HSD1tg/+ islets exhibited attenuated STZ-induced nitric oxide production, an effect reversed with a specific 11beta-HSD1 inhibitor. GC regeneration selectively within β-cells protects against inflammatory β-cell destruction, suggesting therapeutic targeting of 11beta-HSD1 may ameliorate processes that exacerbate type 1 diabetes and that hinder islet transplantation.


Diabetes | 2005

Adipocyte-Specific Glucocorticoid Inactivation Protects Against Diet-Induced Obesity

Erin E. Kershaw; Nicholas M. Morton; Harveen Dhillon; Lynne Ramage; Jonathan R. Seckl; Jeffrey S. Flier


Diabetes | 2005

A Polygenic Model of the Metabolic Syndrome With Reduced Circulating and Intra-Adipose Glucocorticoid Action

Nicholas M. Morton; Valerie S. Densmore; Malgorzata Wamil; Lynne Ramage; Katherine Nichol; L. Bünger; Jonathan R. Seckl; Christopher J. Kenyon

Collaboration


Dive into the Lynne Ramage's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Turban

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar

Nik Morton

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge