Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lynsey M. Whilding is active.

Publication


Featured researches published by Lynsey M. Whilding.


Journal of Immunology | 2013

Preclinical In Vivo Modeling of Cytokine Release Syndrome Induced by ErbB-Retargeted Human T Cells: Identifying a Window of Therapeutic Opportunity?

Sjoukje J. C. van der Stegen; David M. Davies; Scott Wilkie; Julie Foster; Jane K. Sosabowski; Jerome Burnet; Lynsey M. Whilding; Roseanna Petrovic; Sadaf Ghaem-Maghami; Stephen J. Mather; Jean-Pierre Jeannon; Ana C. Parente-Pereira; John Maher

The ErbB network is dysregulated in many solid tumors. To exploit this, we have developed a chimeric Ag receptor (CAR) named T1E28z that targets several pathogenetically relevant ErbB dimers. T1E28z is coexpressed with a chimeric cytokine receptor named 4αβ (combination termed T4), enabling the selective expansion of engineered T cells using IL-4. Human T4+ T cells exhibit antitumor activity against several ErbB+ cancer types. However, ErbB receptors are also expressed in several healthy tissues, raising concerns about toxic potential. In this study, we have evaluated safety of T4 immunotherapy in vivo using a SCID beige mouse model. We show that the human T1E28z CAR efficiently recognizes mouse ErbB+ cells, rendering this species suitable to evaluate preclinical toxicity. Administration of T4+ T cells using the i.v. or intratumoral routes achieves partial tumor regression without clinical or histopathologic toxicity. In contrast, when delivered i.p., tumor reduction is accompanied by dose-dependent side effects. Toxicity mediated by T4+ T cells results from target recognition in both tumor and healthy tissues, leading to release of both human (IL-2/IFN-γ) and murine (IL-6) cytokines. In extreme cases, outcome is lethal. Both toxicity and IL-6 release can be ameliorated by prior macrophage depletion, consistent with clinical data that implicate IL-6 in this pathogenic event. These data demonstrate that CAR-induced cytokine release syndrome can be modeled in mice that express target Ag in an appropriate distribution. Furthermore, our findings argue that ErbB-retargeted T cells can achieve therapeutic benefit in the absence of unacceptable toxicity, providing that route of administration and dose are carefully optimized.


Advanced Healthcare Materials | 2015

Ovarian cancer immunotherapy using PD-L1 siRNA targeted delivery from folic acid-functionalized polyethylenimine: strategies to enhance T cell killing.

Pei Yun Teo; Chuan Yang; Lynsey M. Whilding; Ana C. Parente-Pereira; John Maher; Andrew J.T. George; James L. Hedrick; Yi Yan Yang; Sadaf Ghaem-Maghami

Adoptive T cell immunotherapy is a promising treatment strategy for epithelial ovarian cancer (EOC). However, programmed death ligand-1 (PD-L1), highly expressed on EOC cells, interacts with programmed death-1 (PD-1), expressed on T cells, causing immunosuppression. This study aims to block PD-1/PD-L1 interactions by delivering PD-L1 siRNA, using various folic acid (FA)-functionalized polyethylenimine (PEI) polymers, to SKOV-3-Luc EOC cells, and investigate the sensitization of the EOC cells to T cell killing. To enhance siRNA uptake into EOC cells, which over express folate receptors, PEI is modified with FA or PEG-FA so that siRNA is complexed into nanoparticles with folate molecules on the surface. PEI modification with a single functional group lowers the polymer cytotoxicity compared to unmodified PEI. FA-conjugated polymers increase siRNA uptake into SKOV-3-luc cells and decrease unspecific uptake into monocytes. All polymers result in 40% to 50% PD-L1 protein knockdown. Importantly, SKOV-3-Luc cells treated with either PEI-FA or PEI- polyethylene glycol (PEG)-FA/PD-L1 siRNA complexes are up to twofold more sensitive to T cell killing compared to scrambled siRNA treated controls. These findings are the first to demonstrate that PD-L1 knockdown in EOC cells, via siRNA/FA-targeted delivery, are able to sensitize cancer cells to T cell killing.


Journal of Immunology | 2013

Synergistic Chemoimmunotherapy of Epithelial Ovarian Cancer Using ErbB-Retargeted T Cells Combined with Carboplatin

Ana C. Parente-Pereira; Lynsey M. Whilding; Nancy Brewig; Sjoukje J. C. van der Stegen; David M. Davies; Scott Wilkie; May van Schalkwyk; Sadaf Ghaem-Maghami; John Maher

Epithelial ovarian cancer (EOC) remains the most lethal gynecologic malignancy, underscoring the need for better therapies. Adoptive immunotherapy using genetically targeted T cells represents a promising new treatment for hematologic malignancies. However, solid tumors impose additional obstacles, including the lack of suitable targets for safe systemic therapy and the need to achieve effective T cell homing to sites of disease. Because EOC undergoes transcœlomic metastasis, both of these challenges may be circumvented by T cell administration to the peritoneal cavity. In this study, we describe such an immunotherapeutic approach for EOC, in which human T cells were targeted against the extended ErbB family, using a chimeric Ag receptor named T1E28z. T1E28z was coexpressed with a chimeric cytokine receptor named 4αβ (combination termed T4), enabling the selective ex vivo expansion of engineered T cells using IL-4. Unlike control T cells, T4+ T cells from healthy donors and patients with EOC were activated by and destroyed ErbB+ EOC tumor cell lines and autologous tumor cultures. In vivo antitumor activity was demonstrated in mice bearing established luciferase-expressing SKOV-3 EOC xenografts. Tumor regression was accompanied by mild toxicity, manifested by weight loss. Although efficacy was transient, therapeutic response could be prolonged by repeated T cell administration. Furthermore, prior treatment with noncytotoxic doses of carboplatin sensitized SKOV-3 tumors to T4 immunotherapy, promoting enhanced disease regression using lower doses of T4+ T cells. By combining these approaches, we demonstrate that repeated administration of carboplatin followed by T4+ T cells achieved optimum therapeutic benefit in the absence of significant toxicity, even in mice with advanced tumor burdens.


Molecular Oncology | 2015

CAR T-cell immunotherapy: The path from the by-road to the freeway?

Lynsey M. Whilding; John Maher

Chimeric antigen receptors are genetically encoded artificial fusion molecules that can re‐program the specificity of peripheral blood polyclonal T‐cells against a selected cell surface target. Unparallelled clinical efficacy has recently been demonstrated using this approach to treat patients with refractory B‐cell malignancy. However, the approach is technically challenging and can elicit severe toxicity in patients. Moreover, solid tumours have largely proven refractory to this approach. In this review, we describe the important structural features of CARs and how this may influence function. Emerging clinical experience is summarized in both solid tumours and haematological malignancies. Finally, we consider the particular challenges imposed by solid tumours to the successful development of CAR T‐cell immunotherapy, together with a number of innovative strategies that have been developed in an effort to reverse the balance in favour of therapeutic benefit.


Molecular Therapy | 2017

Targeting of Aberrant αvβ6 Integrin Expression in Solid Tumors Using Chimeric Antigen Receptor-Engineered T Cells

Lynsey M. Whilding; Ana C. Parente-Pereira; Tomasz Zabinski; David M. Davies; Roseanna Petrovic; Y. Vincent Kao; Shobhit Saxena; Alex Romain; Jose A. Costa-Guerra; Shelia M. Violette; Hiroaki Itamochi; Sadaf Ghaem-Maghami; Sabari Vallath; John Marshall; John Maher

Expression of the αvβ6 integrin is upregulated in several solid tumors. In contrast, physiologic expression of this epithelial-specific integrin is restricted to development and epithelial re-modeling. Here, we describe, for the first time, the development of a chimeric antigen receptor (CAR) that couples the recognition of this integrin to the delivery of potent therapeutic activity in a diverse repertoire of solid tumor models. Highly selective targeting αvβ6 was achieved using a foot and mouth disease virus-derived A20 peptide, coupled to a fused CD28+CD3 endodomain. To achieve selective expansion of CAR T cells ex vivo, an IL-4-responsive fusion gene (4αβ) was co-expressed, which delivers a selective mitogenic signal to engineered T cells only. In vivo efficacy was demonstrated in mice with established ovarian, breast, and pancreatic tumor xenografts, all of which express αvβ6 at intermediate to high levels. SCID beige mice were used for these studies because they are susceptible to cytokine release syndrome, unlike more immune-compromised strains. Nonetheless, although the CAR also engages mouse αvβ6, mild and reversible toxicity was only observed when supra-therapeutic doses of CAR T cells were administered parenterally. These data support the clinical evaluation of αvβ6 re-targeted CAR T cell immunotherapy in solid tumors that express this integrin.


Journal of Immunology | 2014

Adoptive Immunotherapy of Epithelial Ovarian Cancer with Vγ9Vδ2 T Cells, Potentiated by Liposomal Alendronic Acid

Ana C. Parente-Pereira; Hilary Shmeeda; Lynsey M. Whilding; Constantinos P. Zambirinis; Julie Foster; Sjoukje J. C. van der Stegen; Richard Beatson; Tomasz Zabinski; Nancy Brewig; Jane K. Sosabowski; Stephen J. Mather; Sadaf Ghaem-Maghami; Alberto Gabizon; John Maher

Adoptive immunotherapy using γδ T cells harnesses their natural role in tumor immunosurveillance. The efficacy of this approach is enhanced by aminobisphosphonates such as zoledronic acid and alendronic acid, both of which promote the accumulation of stimulatory phosphoantigens in target cells. However, the inefficient and nonselective uptake of these agents by tumor cells compromises the effective clinical exploitation of this principle. To overcome this, we have encapsulated aminobisphosphonates within liposomes. Expanded Vγ9Vδ2 T cells from patients and healthy donors displayed similar phenotype and destroyed autologous and immortalized ovarian tumor cells, following earlier pulsing with either free or liposome-encapsulated aminobisphosphonates. However, liposomal zoledronic acid proved highly toxic to SCID Beige mice. By contrast, the maximum tolerated dose of liposomal alendronic acid was 150-fold higher, rendering it much more suited to in vivo use. When injected into the peritoneal cavity, free and liposomal alendronic acid were both highly effective as sensitizing agents, enabling infused γδ T cells to promote the regression of established ovarian tumors by over one order of magnitude. Importantly however, liposomal alendronic acid proved markedly superior compared with free drug following i.v. delivery, exploiting the “enhanced permeability and retention effect” to render advanced tumors susceptible to γδ T cell–mediated shrinkage. Although folate targeting of liposomes enhanced the sensitization of folate receptor–α+ ovarian tumor cells in vitro, this did not confer further therapeutic advantage in vivo. These findings support the development of an immunotherapeutic approach for ovarian and other tumors in which adoptively infused γδ T cells are targeted using liposomal alendronic acid.


Immunotherapy | 2015

ErbB-targeted CAR T-cell immunotherapy of cancer

Lynsey M. Whilding; John Maher

Chimeric antigen receptor (CAR) based immunotherapy has been under development for the last 25 years and is now a promising new treatment modality in the field of cancer immunotherapy. The approach involves genetically engineering T cells to target malignant cells through expression of a bespoke fusion receptor that couples an HLA-independent antigen recognition domain to one or more intracellular T-cell activating modules. Multiple clinical trials are now underway in several centers to investigate CAR T-cell immunotherapy of diverse hematologic and solid tumor types. The most successful results have been achieved in the treatment of patients with B-cell malignancies, in whom several complete and durable responses have been achieved. This review focuses on the preclinical and clinical development of CAR T-cell immunotherapy of solid cancers, targeted against members of the ErbB family.


Clinical Cancer Research | 2017

Clinical use of programmed cell death-1 (PD-1) and its ligand (PD-L1) expression as discriminatory and predictive markers in ovarian cancer

Jayanta Chatterjee; Wei Dai; Nor Haslinda Abd Aziz; Pei Yun Teo; John Wahba; David L. Phelps; Christian J. Maine; Lynsey M. Whilding; Roberto Dina; Giorgia Trevisan; Kirsty Flower; Andrew J. T. George; Sadaf Ghaem-Maghami

Purpose: We aimed to establish whether programmed cell death-1 (PD-1) and programmed cell death ligand 1 (PD-L1) expression, in ovarian cancer tumor tissue and blood, could be used as biomarkers for discrimination of tumor histology and prognosis of ovarian cancer. Experimental Design: Immune cells were separated from blood, ascites, and tumor tissue obtained from women with suspected ovarian cancer and studied for the differential expression of possible immune biomarkers using flow cytometry. PD-L1 expression on tumor-associated inflammatory cells was assessed by immunohistochemistry and tissue microarray. Plasma soluble PD-L1 was measured using sandwich ELISA. The relationships among immune markers were explored using hierarchical cluster analyses. Results: Biomarkers from the discovery cohort that associated with PD-L1+ cells were found. PD-L1+ CD14+ cells and PD-L1+ CD11c+ cells in the monocyte gate showed a distinct expression pattern when comparing benign tumors and epithelial ovarian cancers (EOCs)—confirmed in the validation cohort. Receiver operating characteristic curves showed PD-L1+ and PD-L1+ CD14+ cells in the monocyte gate performed better than the well-established tumor marker CA-125 alone. Plasma soluble PD-L1 was elevated in patients with EOC compared with healthy women and patients with benign ovarian tumors. Low total PD-1+ expression on lymphocytes was associated with improved survival. Conclusions: Differential expression of immunological markers relating to the PD-1/PD-L1 pathway in blood can be used as potential diagnostic and prognostic markers in EOC. These data have implications for the development and trial of anti–PD-1/PD-L1 therapy in ovarian cancer. Clin Cancer Res; 23(13); 3453–60. ©2016 AACR.


OncoImmunology | 2017

CAR T-cell immunotherapy of MET-expressing malignant mesothelioma

Thivyan Thayaparan; Roseanna Petrovic; Daniela Achkova; Tomasz Zabinski; David M. Davies; Astero Klampatsa; Ana C. Parente-Pereira; Lynsey M. Whilding; Sjoukje J. C. van der Stegen; Natalie Woodman; Michael Sheaff; Jennifer R. Cochran; James Spicer; John Maher

ABSTRACT Mesothelioma is an incurable cancer for which effective therapies are required. Aberrant MET expression is prevalent in mesothelioma, although targeting using small molecule-based therapeutics has proven disappointing. Chimeric antigen receptors (CARs) couple the HLA-independent binding of a cell surface target to the delivery of a tailored T-cell activating signal. Here, we evaluated the anti-tumor activity of MET re-targeted CAR T-cells against mesothelioma. Using immunohistochemistry, MET was detected in 67% of malignant pleural mesotheliomas, most frequently of epithelioid or biphasic subtype. The presence of MET did not influence patient survival. Candidate MET-specific CARs were engineered in which a CD28+CD3ζ endodomain was fused to one of 3 peptides derived from the N and K1 domains of hepatocyte growth factor (HGF), which represents the minimum MET binding element present in this growth factor. Using an NIH3T3-based artificial antigen-presenting cell system, we found that all 3 candidate CARs demonstrated high specificity for MET. By contrast, these CARs did not mediate T-cell activation upon engagement of other HGF binding partners, namely CD44v6 or heparan sulfate proteoglycans, including Syndecan-1. NK1-targeted CARs demonstrated broadly similar in vitro potency, indicated by destruction of MET-expressing mesothelioma cell lines, accompanied by cytokine release. In vivo anti-tumor activity was demonstrated following intraperitoneal delivery to mice with an established mesothelioma xenograft. Progressive tumor regression occurred without weight loss or other clinical indicators of toxicity. These data confirm the frequent expression of MET in malignant pleural mesothelioma and demonstrate that this can be targeted effectively and safely using a CAR T-cell immunotherapeutic strategy.


Biochemical Society Transactions | 2016

The integrin αvβ6: a novel target for CAR T-cell immunotherapy?

Lynsey M. Whilding; Sabari Vallath; John Maher

Immunotherapy of cancer using chimeric antigen receptor (CAR) T-cells is a rapidly expanding field. CARs are fusion molecules that couple the binding of a tumour-associated cell surface target to the delivery of a tailored T-cell activating signal. Re-infusion of such genetically engineered T-cells to patients with haematological disease has demonstrated unprecedented response rates in Phase I clinical trials. However, such successes have not yet been observed using CAR T-cells against solid malignancies and this is, in part, due to a lack of safe tumour-specific targets. The αvβ6 integrin is strongly up-regulated in multiple solid tumours including those derived from colon, lung, breast, cervix, ovaries/fallopian tube, pancreas and head and neck. It is associated with poorer prognosis in several cancers and exerts pro-tumorigenic activities including promotion of tumour growth, migration and invasion. By contrast, physiologic expression of αvβ6 is largely restricted to wound healing. These attributes render this epithelial-specific integrin a highly attractive candidate for targeting using immunotherapeutic strategies such as CAR T-cell adoptive immunotherapy. This mini-review will discuss the role and expression of αvβ6 in cancer, as well as its potential as a therapeutic target.

Collaboration


Dive into the Lynsey M. Whilding's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge