Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lyubov A. Ryabova is active.

Publication


Featured researches published by Lyubov A. Ryabova.


Cell | 2001

A Plant Viral “Reinitiation” Factor Interacts with the Host Translational Machinery

Hyun-Sook Park; Axel Himmelbach; Karen S. Browning; Thomas Hohn; Lyubov A. Ryabova

The cauliflower mosaic virus transactivator, TAV, controls translation reinitiation of major open reading frames on polycistronic RNA. We show here that TAV function depends on its association with polysomes and eukaryotic initiation factor eIF3 in vitro and in vivo. TAV physically interacts with eIF3 and the 60S ribosomal subunit. Two proteins mediating these interactions were identified: eIF3g and 60S ribosomal protein L24. Transient expression of eIF3g and L24 in plant protoplasts strongly affects TAV-mediated reinitiation activity. We demonstrate that TAV/eIF3/40S and eIF3/TAV/60S ternary complexes form in vitro, and propose that TAV mediates efficient recruitment of eIF3 to polysomes, allowing translation of polycistronic mRNAs by reinitiation, overcoming the normal cell barriers to this process.


The EMBO Journal | 2013

TOR and S6K1 promote translation reinitiation of uORF-containing mRNAs via phosphorylation of eIF3h

Mikhail Schepetilnikov; Maria Dimitrova; Eder Mancera-Martínez; Angèle Geldreich; Mario Keller; Lyubov A. Ryabova

Mammalian target‐of‐rapamycin (mTOR) triggers S6 kinase (S6K) activation to phosphorylate targets linked to translation in response to energy, nutrients, and hormones. Pathways of TOR activation in plants remain unknown. Here, we uncover the role of the phytohormone auxin in TOR signalling activation and reinitiation after upstream open reading frame (uORF) translation, which in plants is dependent on translation initiation factor eIF3h. We show that auxin triggers TOR activation followed by S6K1 phosphorylation at T449 and efficient loading of uORF‐mRNAs onto polysomes in a manner sensitive to the TOR inhibitor Torin‐1. Torin‐1 mediates recruitment of inactive S6K1 to polysomes, while auxin triggers S6K1 dissociation and recruitment of activated TOR instead. A putative target of TOR/S6K1—eIF3h—is phosphorylated and detected in polysomes in response to auxin. In TOR‐deficient plants, polysomes were prebound by inactive S6K1, and loading of uORF‐mRNAs and eIF3h was impaired. Transient expression of eIF3h‐S178D in plant protoplasts specifically upregulates uORF‐mRNA translation. We propose that TOR functions in polysomes to maintain the active S6K1 (and thus eIF3h) phosphorylation status that is critical for translation reinitiation.


Progress in Nucleic Acid Research and Molecular Biology | 2002

Viral strategies of translation initiation: Ribosomal shunt and reinitiation

Lyubov A. Ryabova; Mikhail M. Pooggin; Thomas Hohn

Abstract Due to the compactness of their genomes, viruses are well suited to the study of basic expression mechanisms, including details of transcription, RNA processing, transport, and translation. In fact, most basic principles of these processes were first described in viral systems. Furthermore, viruses seem not to respect basic rules, and cases of “abnormal” expression strategies are quiet common, although such strategies are usually also finally observed in rare cases of cellular gene expression. Concerning translation, viruses most often violate Kozaks original rule that eukaryotic translation starts from a capped monocistronic mRNA and involves linear scanning to find the first suitable start codon. Thus, many viral cases have been described where translation is initiated from noncapped RNA, using an internal ribosome entry site. This review centers on other viral translation strategies, namely shunting and virus-controlled reinitiation as first described in plant pararetroviruses (Caulimoviridae). In shunting, major parts of a complex leader are bypassed and not melted by scanning ribosomes. In the Caulimoviridae, this process is coupled to reinitiation after translation of a small open reading frame; in other cases, it is possibly initiated upon pausing of the scanning ribosome. Most of the Caulimoviridae produce polycistronic mRNAs. Two basic mechanisms are used for their translation. Alternative translation of the downstream open reading frames in the bacilliform Caulimoviridae occurs by a leaky scanning mechanism, and reinitiation of polycistronic translation in many of the icosahedral Caulimoviridae is enabled by the action of a viral transactivator. Both of these processes are discussed here in detail and compared to related processes in other viruses and cells.


The EMBO Journal | 2011

Viral factor TAV recruits TOR/S6K1 signalling to activate reinitiation after long ORF translation.

Mikhail Schepetilnikov; Kappei Kobayashi; Angèle Geldreich; Carole Caranta; Christophe Robaglia; Mario Keller; Lyubov A. Ryabova

The protein kinase TOR (target‐of‐rapamycin) upregulates translation initiation in eukaryotes, but initiation restart after long ORF translation is restricted by largely unknown pathways. The plant viral reinitiation factor transactivator–viroplasmin (TAV) exceptionally promotes reinitiation through a mechanism involving retention on 80S and reuse of eIF3 and the host factor reinitiation‐supporting protein (RISP) to regenerate reinitiation‐competent ribosomal complexes. Here, we show that TAV function in reinitiation depends on physical association with TOR, with TAV–TOR binding being critical for both translation reinitiation and viral fitness. Consistently, TOR‐deficient plants are resistant to viral infection. TAV triggers TOR hyperactivation and S6K1 phosphorylation in planta. When activated, TOR binds polyribosomes concomitantly with polysomal accumulation of eIF3 and RISP—a novel and specific target of TOR/S6K1—in a TAV‐dependent manner, with RISP being phosphorylated. TAV mutants defective in TOR binding fail to recruit TOR, thereby abolishing RISP phosphorylation in polysomes and reinitiation. Thus, activation of reinitiation after long ORF translation is more complex than previously appreciated, with TOR/S6K1 upregulation being the key event in the formation of reinitiation‐competent ribosomal complexes.


The Plant Cell | 2005

The Open Reading Frame VI Product of Cauliflower mosaic virus Is a Nucleocytoplasmic Protein: Its N Terminus Mediates Its Nuclear Export and Formation of Electron-Dense Viroplasms

Muriel Haas; Angèle Geldreich; Marina Bureau; Laurence Dupuis; Véronique Leh; Guillaume Vetter; Kappei Kobayashi; Thomas Hohn; Lyubov A. Ryabova; Pierre Yot; Mario Keller

The Cauliflower mosaic virus (CaMV) open reading frame VI product (P6) is essential for the viral infection cycle. It controls translation reinitiation of the viral polycistronic RNAs and forms cytoplasmic inclusion bodies (viroplasms) where virus replication and assembly occur. In this study, the mechanism involved in viroplasm formation was investigated by in vitro and in vivo experiments. Far protein gel blot assays using a collection of P6 deletion mutants demonstrated that the N-terminal α-helix of P6 mediates interaction between P6 molecules. Transient expression in tobacco (Nicotiana tabacum) BY-2 cells of full-length P6 and P6 mutants fused to enhanced green fluorescent protein revealed that viroplasms are formed at the periphery of the nucleus and that the N-terminal domain of P6 is an important determinant in this process. Finally, this study led to the unexpected finding that P6 is a nucleocytoplasmic shuttle protein and that its nuclear export is mediated by a Leu-rich sequence that is part of the α-helix domain implicated in viroplasm formation. The discovery that P6 can localize to the nucleus opens new prospects for understanding yet unknown roles of this viral protein in the course of the CaMV infection cycle.


The EMBO Journal | 2004

Eucaryotic initiation factor 4B controls eIF3‐mediated ribosomal entry of viral reinitiation factor

Hyun-Sook Park; Karen S. Browning; Thomas Hohn; Lyubov A. Ryabova

The cauliflower mosaic virus reinitiation factor TAV interacts with host translation initiation factor 3 (eIF3) and the 60S ribosomal subunit to accomplish translation of polycistronic mRNAs. Interaction between TAV and eIF3g is critical for the reinitiation process. Here, we show that eIF4B can preclude formation of the TAV/eIF3 complex via competition with TAV for eIF3g binding; indeed, the eIF4B‐ and TAV‐binding sites on eIF3g overlap. Our data indicate that eIF4B interferes with TAV/eIF3/40S ribosome complex formation during the first initiation event. Consequently, overexpression of TAV in plant protoplasts affects only second initiation events. Transient overexpression of eIF4B in plant protoplasts specifically inhibits TAV‐mediated reinitiation of a second ORF. These data suggest that TAV enters the host translation machinery at the eIF4B removal step to stabilize eIF3 on the translating ribosome, thereby allowing translation of polycistronic viral RNA.


The EMBO Journal | 2009

A new plant protein interacts with eIF3 and 60S to enhance virus‐activated translation re‐initiation

Odon Thiébeauld; Mikhail Schepetilnikov; Hyun-Sook Park; Angèle Geldreich; Kappei Kobayashi; Mario Keller; Thomas Hohn; Lyubov A. Ryabova

The plant viral re‐initiation factor transactivator viroplasmin (TAV) activates translation of polycistronic mRNA by a re‐initiation mechanism involving translation initiation factor 3 (eIF3) and the 60S ribosomal subunit (60S). QJ;Here, we report a new plant factor—re‐initiation supporting protein (RISP)—that enhances TAV function in re‐initiation. RISP interacts physically with TAV in vitro and in vivo. Mutants defective in interaction are less active, or inactive, in transactivation and viral amplification. RISP alone can serve as a scaffold protein, which is able to interact with eIF3 subunits a/c and 60S, apparently through the C‐terminus of ribosomal protein L24. RISP pre‐bound to eIF3 binds 40S, suggesting that RISP enters the translational machinery at the 43S formation step. RISP, TAV and 60S co‐localize in epidermal cells of infected plants, and eIF3–TAV–RISP–L24 complex formation can be shown in vitro. These results suggest that RISP and TAV bridge interactions between eIF3‐bound 40S and L24 of 60S after translation termination to ensure 60S recruitment during repetitive initiation events on polycistronic mRNA; RISP can thus be considered as a new component of the cell translation machinery.


Journal of Biological Chemistry | 2000

Continuous and discontinuous ribosome scanning on the cauliflower mosaic virus 35 S RNA leader is controlled by short open reading frames.

Lyubov A. Ryabova; Mikhail M. Pooggin; Diana Ines Dominguez; Thomas Hohn

The pathways of scanning ribosome migration controlled by the cauliflower mosaic virus 35 S RNA leader were investigated in vitro and in vivo. This long (600 nucleotides) leader contains several short open reading frames (sORFs) and folds into an extended hairpin structure with three main stable stem sections. Translation initiation downstream of the leader is cap-dependent and occurs via ribosomal shunt under the control of two cis elements, a short open reading frame A (sORF A) followed by stem section 1. Here we show that a second similar configuration comprising sORF B followed by stem section 2 also allows shunting. The efficiency of the secondary shunt was greatly increased when stem section 1 was destabilized. In addition, we present evidence that a significant fraction of reinitiation-competent ribosomes that escape both shunt events migrate linearly via the structured central region but are intercepted by internal AUG start codons. Thus, expression downstream of the 35 S RNA leader is largely controlled by its multiple sORFs.


Frontiers in Plant Science | 2016

The Arabidopsis TOR Kinase Specifically Regulates the Expression of Nuclear Genes Coding for Plastidic Ribosomal Proteins and the Phosphorylation of the Cytosolic Ribosomal Protein S6

Thomas Dobrenel; Eder Mancera-Martínez; Céline Forzani; Marianne Azzopardi; Marlène Davanture; Manon Moreau; Mikhail Schepetilnikov; Johana Chicher; Olivier Langella; Michel Zivy; Christophe Robaglia; Lyubov A. Ryabova; Johannes Hanson; Christian Meyer

Protein translation is an energy consuming process that has to be fine-tuned at both the cell and organism levels to match the availability of resources. The target of rapamycin kinase (TOR) is a key regulator of a large range of biological processes in response to environmental cues. In this study, we have investigated the effects of TOR inactivation on the expression and regulation of Arabidopsis ribosomal proteins at different levels of analysis, namely from transcriptomic to phosphoproteomic. TOR inactivation resulted in a coordinated down-regulation of the transcription and translation of nuclear-encoded mRNAs coding for plastidic ribosomal proteins, which could explain the chlorotic phenotype of the TOR silenced plants. We have identified in the 5′ untranslated regions (UTRs) of this set of genes a conserved sequence related to the 5′ terminal oligopyrimidine motif, which is known to confer translational regulation by the TOR kinase in other eukaryotes. Furthermore, the phosphoproteomic analysis of the ribosomal fraction following TOR inactivation revealed a lower phosphorylation of the conserved Ser240 residue in the C-terminal region of the 40S ribosomal protein S6 (RPS6). These results were confirmed by Western blot analysis using an antibody that specifically recognizes phosphorylated Ser240 in RPS6. Finally, this antibody was used to follow TOR activity in plants. Our results thus uncover a multi-level regulation of plant ribosomal genes and proteins by the TOR kinase.


The EMBO Journal | 2017

GTPase ROP2 binds and promotes activation of target of rapamycin, TOR, in response to auxin

Mikhail Schepetilnikov; Joelle Makarian; Ola Srour; Angèle Geldreich; Zhenbiao Yang; Johana Chicher; Philippe Hammann; Lyubov A. Ryabova

Target of rapamycin (TOR) promotes reinitiation at upstream ORFs (uORFs) in genes that play important roles in stem cell regulation and organogenesis in plants. Here, we report that the small GTPase ROP2, if activated by the phytohormone auxin, promotes activation of TOR, and thus translation reinitiation of uORF‐containing mRNAs. Plants with high levels of active ROP2, including those expressing constitutively active ROP2 (CA‐ROP2), contain high levels of active TOR. ROP2 physically interacts with and, when GTP‐bound, activates TOR in vitro. TOR activation in response to auxin is abolished in ROP‐deficient rop2 rop6 ROP4 RNAi plants. GFP‐TOR can associate with endosome‐like structures in ROP2‐overexpressing plants, indicating that endosomes mediate ROP2 effects on TOR activation. CA‐ROP2 is efficient in loading uORF‐containing mRNAs onto polysomes and stimulates translation in protoplasts, and both processes are sensitive to TOR inhibitor AZD‐8055. TOR inactivation abolishes ROP2 regulation of translation reinitiation, but not its effects on cytoskeleton or intracellular trafficking. These findings imply a mode of translation control whereby, as an upstream effector of TOR, ROP2 coordinates TOR function in translation reinitiation pathways in response to auxin.

Collaboration


Dive into the Lyubov A. Ryabova's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mario Keller

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge