Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M.A.A.P. Willemsen is active.

Publication


Featured researches published by M.A.A.P. Willemsen.


Nature Medicine | 2006

Mutations in antiquitin in individuals with pyridoxine-dependent seizures

Philippa B. Mills; Eduard A. Struys; Cornelis Jakobs; Barbara Plecko; Peter Baxter; Matthias R. Baumgartner; M.A.A.P. Willemsen; Heymut Omran; Uta Tacke; Birgit Uhlenberg; Bernhard Weschke; Peter Clayton

We show here that children with pyridoxine-dependent seizures (PDS) have mutations in the ALDH7A1 gene, which encodes antiquitin; these mutations abolish the activity of antiquitin as a Δ1-piperideine-6-carboxylate (P6C)–α-aminoadipic semialdehyde (α-AASA) dehydrogenase. The accumulating P6C inactivates pyridoxal 5′-phosphate (PLP) by forming a Knoevenagel condensation product. Measurement of urinary α-AASA provides a simple way of confirming the diagnosis of PDS and ALDH7A1 gene analysis provides a means for prenatal diagnosis.


Brain | 2010

Glucose transporter-1 deficiency syndrome: the expanding clinical and genetic spectrum of a treatable disorder

Wilhelmina G. Leen; Joerg Klepper; Marcel M. Verbeek; Maike Leferink; Tom Hofste; Baziel G.M. van Engelen; Ron A. Wevers; Todd M. Arthur; Nadia Bahi-Buisson; Diana Ballhausen; Jolita Bekhof; Patrick van Bogaert; Inês Carrilho; Brigitte Chabrol; Michael Champion; James Coldwell; Peter Clayton; Elizabeth Donner; Athanasios Evangeliou; Friedrich Ebinger; Kevin Farrell; Rob Forsyth; Christian de Goede; Stephanie Gross; Stephanie Grunewald; Hans Holthausen; Sandeep Jayawant; Katherine Lachlan; Vincent Laugel; Kathy Leppig

Glucose transporter-1 deficiency syndrome is caused by mutations in the SLC2A1 gene in the majority of patients and results in impaired glucose transport into the brain. From 2004-2008, 132 requests for mutational analysis of the SLC2A1 gene were studied by automated Sanger sequencing and multiplex ligation-dependent probe amplification. Mutations in the SLC2A1 gene were detected in 54 patients (41%) and subsequently in three clinically affected family members. In these 57 patients we identified 49 different mutations, including six multiple exon deletions, six known mutations and 37 novel mutations (13 missense, five nonsense, 13 frame shift, four splice site and two translation initiation mutations). Clinical data were retrospectively collected from referring physicians by means of a questionnaire. Three different phenotypes were recognized: (i) the classical phenotype (84%), subdivided into early-onset (<2 years) (65%) and late-onset (18%); (ii) a non-classical phenotype, with mental retardation and movement disorder, without epilepsy (15%); and (iii) one adult case of glucose transporter-1 deficiency syndrome with minimal symptoms. Recognizing glucose transporter-1 deficiency syndrome is important, since a ketogenic diet was effective in most of the patients with epilepsy (86%) and also reduced movement disorders in 48% of the patients with a classical phenotype and 71% of the patients with a non-classical phenotype. The average delay in diagnosing classical glucose transporter-1 deficiency syndrome was 6.6 years (range 1 month-16 years). Cerebrospinal fluid glucose was below 2.5 mmol/l (range 0.9-2.4 mmol/l) in all patients and cerebrospinal fluid : blood glucose ratio was below 0.50 in all but one patient (range 0.19-0.52). Cerebrospinal fluid lactate was low to normal in all patients. Our relatively large series of 57 patients with glucose transporter-1 deficiency syndrome allowed us to identify correlations between genotype, phenotype and biochemical data. Type of mutation was related to the severity of mental retardation and the presence of complex movement disorders. Cerebrospinal fluid : blood glucose ratio was related to type of mutation and phenotype. In conclusion, a substantial number of the patients with glucose transporter-1 deficiency syndrome do not have epilepsy. Our study demonstrates that a lumbar puncture provides the diagnostic clue to glucose transporter-1 deficiency syndrome and can thereby dramatically reduce diagnostic delay to allow early start of the ketogenic diet.


Nature Genetics | 2012

Mutations in ISPD cause Walker-Warburg syndrome and defective glycosylation of α-dystroglycan.

Tony Roscioli; Erik-Jan Kamsteeg; K Buysse; Isabelle Maystadt; Jeroen van Reeuwijk; Christa van den Elzen; Ellen van Beusekom; Moniek Riemersma; Rolph Pfundt; Lisenka E.L.M. Vissers; Margit Schraders; Umut Altunoglu; Michael Buckley; Han G. Brunner; Bernard Grisart; Huiqing Zhou; Joris A. Veltman; Christian Gilissen; Grazia M.S. Mancini; Paul Delrée; M.A.A.P. Willemsen; Danijela Petković Ramadža; David Chitayat; Christopher L. Bennett; Eamonn Sheridan; Els Peeters; Gita M. B. Tan-Sindhunata; Christine E.M. de Die-Smulders; Koenraad Devriendt; Hülya Kayserili

Walker-Warburg syndrome (WWS) is an autosomal recessive multisystem disorder characterized by complex eye and brain abnormalities with congenital muscular dystrophy (CMD) and aberrant α-dystroglycan glycosylation. Here we report mutations in the ISPD gene (encoding isoprenoid synthase domain containing) as the second most common cause of WWS. Bacterial IspD is a nucleotidyl transferase belonging to a large glycosyltransferase family, but the role of the orthologous protein in chordates is obscure to date, as this phylum does not have the corresponding non-mevalonate isoprenoid biosynthesis pathway. Knockdown of ispd in zebrafish recapitulates the human WWS phenotype with hydrocephalus, reduced eye size, muscle degeneration and hypoglycosylated α-dystroglycan. These results implicate ISPD in α-dystroglycan glycosylation in maintaining sarcolemma integrity in vertebrates.


Nature Genetics | 2008

tRNA splicing endonuclease mutations cause pontocerebellar hypoplasia

Birgit Budde; Yasmin Namavar; Peter G. Barth; Bwee Tien Poll-The; Gudrun Nürnberg; Christian Becker; Fred van Ruissen; Marian A. J. Weterman; Kees Fluiter; Erik T. Te Beek; Eleonora Aronica; Marjo S. van der Knaap; Wolfgang Höhne; Mohammad R. Toliat; Yanick J. Crow; Maja Steinlin; Thomas Voit; Filip Roelens; Wim Brussel; Knut Brockmann; Mårten Kyllerman; Eugen Boltshauser; Gerhard Hammersen; M.A.A.P. Willemsen; Lina Basel-Vanagaite; Ingeborg Krägeloh-Mann; Linda S. de Vries; László Sztriha; Francesco Muntoni; Colin D. Ferrie

Pontocerebellar hypoplasias (PCH) represent a group of neurodegenerative autosomal recessive disorders with prenatal onset, atrophy or hypoplasia of the cerebellum, hypoplasia of the ventral pons, microcephaly, variable neocortical atrophy and severe mental and motor impairments. In two subtypes, PCH2 and PCH4, we identified mutations in three of the four different subunits of the tRNA-splicing endonuclease complex. Our findings point to RNA processing as a new basic cellular impairment in neurological disorders.


Lancet Oncology | 2012

Long-term cognitive and cardiac outcomes after prenatal exposure to chemotherapy in children aged 18 months or older: an observational study

Frédéric Amant; Kristel Van Calsteren; Michael Halaska; Mina Mhallem Gziri; Wei Hui; Lieven Lagae; M.A.A.P. Willemsen; Livia Kapusta; Ben Van Calster; Heidi Wouters; Liesbeth Heyns; Sileny Han; Viktor Tomek; Luc Mertens; P.B. Ottevanger

BACKGROUND Chemotherapy for the treatment of maternal cancers during pregnancy has become more acceptable in the past decade; however, the effect of prenatal exposure to chemotherapy on cardiac and neurodevelopmental outcomes of the offspring is still uncertain. We aimed to record the general health, cardiac function, and neurodevelopmental outcomes of children who were prenatally exposed to chemotherapy. METHODS We did an interim analysis of a multicentre observational cohort study assessing children who were prenatally exposed to maternal cancer staging and treatment, including chemotherapy. We assessed children at birth, at age 18 months, and at age 5-6, 8-9, 11-12, 14-15, or 18 years. We did clinical neurological examinations, tests of the general level of cognitive functioning (Bayley or intelligence quotient [IQ] test), electrocardiography and echocardiography, and administered a questionnaire on general health and development. From age 5 years, we also did audiometry, the Auditory Verbal Learning Test, and subtasks of the Childrens Memory Scale, and the Test of Everyday Attention for Children, and we also completed the Child Behavior Checklist. This study is registered with ClinicalTrials.gov, number NCT00330447. FINDINGS 236 cycles of chemotherapy were administered in 68 pregnancies. We assessed 70 children, born at a median gestational age of 35·7 weeks (range 28·3-41·0; IQR 3·3; 47 women at <37 weeks), with a median follow-up period of 22·3 months (range 16·8-211·6; IQR 54·9). Although neurocognitive outcomes were within normal ranges, cognitive development scores were lower for children who were born preterm than for those born at full term. When controlling for age, sex, and country, the score for IQ increased by an average 11·6 points (95% CI 6·0-17·1) for each additional month of gestation (p<0·0001). Our measurements of the childrens behaviour, general health, hearing, and growth corresponded with those of the general population. Cardiac dimensions and functions were within normal ranges. We identified a severe neurodevelopmental delay in both members of one twin pregnancy. INTERPRETATION Fetal exposure to chemotherapy was not associated with increased CNS, cardiac or auditory morbidity, or with impairments to general health and growth compared with the general population. However, subtle changes in cardiac and neurocognitive measurements emphasise the need for longer follow-up. Prematurity was common and was associated with impaired cognitive development. Therefore, iatrogenic preterm delivery should be avoided when possible. FUNDING Research Foundation-Flanders; Research Fund-K U Leuven; Agency for Innovation by Science and Technology; Stichting tegen Kanker; Clinical Research Fund-University Hospitals Leuven; and Belgian Cancer Plan, Ministery of Health.


Brain | 2010

Tyrosine hydroxylase deficiency: a treatable disorder of brain catecholamine biosynthesis

M.A.A.P. Willemsen; Marcel M. Verbeek; Erik-Jan Kamsteeg; Johanneke F. de Rijk-van Andel; A. Aeby; Nenad Blau; Alberto Burlina; Maria Anna Donati; B. Geurtz; Padraic J. Grattan-Smith; Martin Haeussler; Georg F. Hoffmann; Hans H. Jung; Johannis B. C. de Klerk; Marjo S. van der Knaap; Fernando Kok; Vincenzo Leuzzi; Pascale de Lonlay; André Mégarbané; Hugh Monaghan; Willy O. Renier; Pierre Rondot; Monique M. Ryan; Jürgen Seeger; Jan A.M. Smeitink; G.C.H. Steenbergen-Spanjers; Evangeline Wassmer; Bernhard Weschke; Frits A. Wijburg; Bridget Wilcken

Tyrosine hydroxylase deficiency is an autosomal recessive disorder resulting from cerebral catecholamine deficiency. Tyrosine hydroxylase deficiency has been reported in fewer than 40 patients worldwide. To recapitulate all available evidence on clinical phenotypes and rational diagnostic and therapeutic approaches for this devastating, but treatable, neurometabolic disorder, we studied 36 patients with tyrosine hydroxylase deficiency and reviewed the literature. Based on the presenting neurological features, tyrosine hydroxylase deficiency can be divided in two phenotypes: an infantile onset, progressive, hypokinetic-rigid syndrome with dystonia (type A), and a complex encephalopathy with neonatal onset (type B). Decreased cerebrospinal fluid concentrations of homovanillic acid and 3-methoxy-4-hydroxyphenylethylene glycol, with normal 5-hydroxyindoleacetic acid cerebrospinal fluid concentrations, are the biochemical hallmark of tyrosine hydroxylase deficiency. The homovanillic acid concentrations and homovanillic acid/5-hydroxyindoleacetic acid ratio in cerebrospinal fluid correlate with the severity of the phenotype. Tyrosine hydroxylase deficiency is almost exclusively caused by missense mutations in the TH gene and its promoter region, suggesting that mutations with more deleterious effects on the protein are incompatible with life. Genotype-phenotype correlations do not exist for the common c.698G>A and c.707T>C mutations. Carriership of at least one promotor mutation, however, apparently predicts type A tyrosine hydroxylase deficiency. Most patients with tyrosine hydroxylase deficiency can be successfully treated with l-dopa.


Neurology | 2009

Clinical spectrum of ataxia-telangiectasia in adulthood

Mijke M.M. Verhagen; W. F. Abdo; M.A.A.P. Willemsen; Frans B. L. Hogervorst; Dominique Smeets; J.A.P. Hiel; Ewout Brunt; M. A. van Rijn; D. Majoor Krakauer; Rogier A. Oldenburg; Annegien Broeks; L. J. van’t Veer; Marina A. J. Tijssen; A. M.I. Dubois; H. P.H. Kremer; Corry Weemaes; A.M.R. Taylor; M. van Deuren

Objective: To describe the phenotype of adult patients with variant and classic ataxia-telangiectasia (A-T), to raise the degree of clinical suspicion for the diagnosis variant A-T, and to assess a genotype–phenotype relationship for mutations in the ATM gene. Methods: Retrospective analysis of the clinical characteristics and course of disease in 13 adult patients with variant A-T of 9 families and 6 unrelated adults with classic A-T and mutation analysis of the ATM gene and measurements of ATM protein expression and kinase activity. Results: Patients with variant A-T were only correctly diagnosed in adulthood. They often presented with extrapyramidal symptoms in childhood, whereas cerebellar ataxia appeared later. Four patients with variant A-T developed a malignancy. Patients with classic and variant A-T had elevated serum α-fetoprotein levels and chromosome 7/14 rearrangements. The mildest variant A-T phenotype was associated with missense mutations in the ATM gene that resulted in expression of some residual ATM protein with kinase activity. Two splicing mutations, c.331 + 5G>A and c.496 + 5G>A, caused a more severe variant A-T phenotype. The splicing mutation c.331 + 5G>A resulted in less ATM protein and kinase activity than the missense mutations. Conclusions: Ataxia-telangiectasia (A-T) should be considered in patients with unexplained extrapyramidal symptoms. Early diagnosis is important given the increased risk of malignancies and the higher risk for side effects of subsequent cancer treatment. Measurement of serum α-fetoprotein and chromosomal instability precipitates the correct diagnosis. There is a clear genotype–phenotype relation for A-T, since the severity of the phenotype depends on the amount of residual kinase activity as determined by the genotype.


Journal of Medical Genetics | 2012

Mutations in DYNC1H1 cause severe intellectual disability with neuronal migration defects

Marjolein H. Willemsen; L.E.L.M. Peart-Vissers; M.A.A.P. Willemsen; B.W.M. van Bon; Thessa Kroes; J. de Ligt; L.B.A. de Vries; Jeroen Schoots; Dorien Lugtenberg; B.C.J. Hamel; J.H.L.M. van Bokhoven; Han G. Brunner; J.A. Veltman; Tjitske Kleefstra

Background DYNC1H1 encodes the heavy chain protein of the cytoplasmic dynein 1 motor protein complex that plays a key role in retrograde axonal transport in neurons. Furthermore, it interacts with the LIS1 gene of which haploinsufficiency causes a severe neuronal migration disorder in humans, known as classical lissencephaly or Miller-Dieker syndrome. Aim To describe the clinical spectrum and molecular characteristics of DYNC1H1 mutations. Methods A family based exome sequencing approach was used to identify de novo mutations in patients with severe intellectual disability. Results In this report the identification of two de novo missense mutations in DYNC1H1 (p.Glu1518Lys and p.His3822Pro) in two patients with severe intellectual disability and variable neuronal migration defects is described. Conclusion Since an autosomal dominant mutation in DYNC1H1 was previously identified in a family with the axonal (type 2) form of Charcot- Marie-Tooth (CMT2) disease and mutations in Dync1h1 in mice also cause impaired neuronal migration in addition to neuropathy, these data together suggest that mutations in DYNC1H1 can lead to a broad phenotypic spectrum and confirm the importance of DYNC1H1 in both central and peripheral neuronal functions.


Neurology | 2010

Clinical and biochemical features of aromatic L-amino acid decarboxylase deficiency

L. Brun; L. H. Ngu; W. T. Keng; G. S. Ch'ng; Y. S. Choy; Wuh-Liang Hwu; Wang-Tso Lee; M.A.A.P. Willemsen; Marcel M. Verbeek; Tessa Wassenberg; Luc Régal; S. Orcesi; D. Tonduti; P. Accorsi; H. Testard; Jose E. Abdenur; S. Tay; G. F. Allen; Simon Heales; Ilse Kern; Mitsuhiro Kato; Alberto Burlina; C. Manegold; G. F. Hoffmann; Nenad Blau

Objective: To describe the current treatment; clinical, biochemical, and molecular findings; and clinical follow-up of patients with aromatic l-amino acid decarboxylase (AADC) deficiency. Method: Clinical and biochemical data of 78 patients with AADC deficiency were tabulated in a database of pediatric neurotransmitter disorders (JAKE). A total of 46 patients have been previously reported; 32 patients are described for the first time. Results: In 96% of AADC-deficient patients, symptoms (hypotonia 95%, oculogyric crises 86%, and developmental retardation 63%) became clinically evident during infancy or childhood. Laboratory diagnosis is based on typical CSF markers (low homovanillic acid, 5-hydroxyindoleacidic acid, and 3-methoxy-4-hydroxyphenolglycole, and elevated 3-O-methyl-l-dopa, l-dopa, and 5-hydroxytryptophan), absent plasma AADC activity, or elevated urinary vanillactic acid. A total of 24 mutations in the DDC gene were detected in 49 patients (8 reported for the first time: p.L38P, p.Y79C, p.A110Q, p.G123R, p.I42fs, c.876G>A, p.R412W, p.I433fs) with IVS6+ 4A>T being the most common one (allele frequency 45%). Conclusion: Based on clinical symptoms, CSF neurotransmitters profile is highly indicative for the diagnosis of aromatic l-amino acid decarboxylase deficiency. Treatment options are limited, in many cases not beneficial, and prognosis is uncertain. Only 15 patients with a relatively mild form clearly improved on a combined therapy with pyridoxine (B6)/pyridoxal phosphate, dopamine agonists, and monoamine oxidase B inhibitors.


European Journal of Pediatrics | 2005

Brain-Thyroid-Lung syndrome: A patient with a severe multi-system disorder due to a de novo mutation in the thyroid transcription factor 1 gene

M.A.A.P. Willemsen; Guido J. Breedveld; Siep Wouda; Barto J. Otten; Jan L. Yntema; Martin Lammens; Bert B.A. de Vries

A 23-year-old man was diagnosed with pulmonary alveolar proteinosis at the age of 11 months, and primary hypothyroidism gradually developed during infancy. He had delayed developmental milestones and severe hypotonia that evolved into non-progressive chorea during childhood. He died from large cell lung carcinoma at the age of 23 years. A de novo heterozygous insertion mutation 859–860insC in the TITF-1 gene was demonstrated. Conclusion: TITF-1 gene mutations should be considered in paediatric and adult patients with unexplained (combinations of) chorea, mental retardation, primary hypothyroidism, and chronic lung disease. Introduction of a name for the disorder, e.g. Brain-Thyroid-Lung syndrome, would probably facilitate further recognition. Whether the TITF-1 gene mutation in this patient predisposed to the development of lung cancer remains speculative.

Collaboration


Dive into the M.A.A.P. Willemsen's collaboration.

Top Co-Authors

Avatar

Ron A. Wevers

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Marcel M. Verbeek

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Jan J. Rotteveel

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Wilhelmina G. Leen

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Cornelis Jakobs

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Erik-Jan Kamsteeg

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Eduard A. Struys

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar

J.R.M. Cruysberg

Radboud University Nijmegen Medical Centre

View shared research outputs
Top Co-Authors

Avatar

Ertan Mayatepek

University of Düsseldorf

View shared research outputs
Researchain Logo
Decentralizing Knowledge