M. A. Armstrong
Durham University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M. A. Armstrong.
Archive | 1988
M. A. Armstrong
The isometries of the plane form a group under composition of functions, the so called Euclidean group E2. A function g: R2 ia> R2 belongs to E2, provided it preserves distance; that is to say
Archive | 1988
M. A. Armstrong
Archive | 1988
M. A. Armstrong
||g\left( x \right) - g\left( y \right)|| = ||x - y||
Archive | 1988
M. A. Armstrong
Archive | 1988
M. A. Armstrong
(1) for every pair of points x, y in ℝ2. If g, h ∈ E2, we have
Archive | 1988
M. A. Armstrong
Archive | 1988
M. A. Armstrong
||g\left( {h\left( x \right)} \right) - g\left( {h\left( y \right)} \right)|| = ||h\left( x \right) - h\left( y \right)||
Archive | 1988
M. A. Armstrong
Archive | 1988
M. A. Armstrong
(2) because g is an isometry
Archive | 1983
M. A. Armstrong