Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. A. Armstrong is active.

Publication


Featured researches published by M. A. Armstrong.


Archive | 1988

The Euclidean Group

M. A. Armstrong

The isometries of the plane form a group under composition of functions, the so called Euclidean group E2. A function g: R2 ia> R2 belongs to E2, provided it preserves distance; that is to say


Archive | 1988

Plato’s Solids and Cayley’s Theorem

M. A. Armstrong


Archive | 1988

Finite Rotation Groups

M. A. Armstrong

||g\left( x \right) - g\left( y \right)|| = ||x - y||


Archive | 1988

The Sylow Theorems

M. A. Armstrong


Archive | 1988

Subgroups and Generators

M. A. Armstrong

(1) for every pair of points x, y in ℝ2. If g, h ∈ E2, we have


Archive | 1988

Lagrange’s Theorem

M. A. Armstrong


Archive | 1988

Row and Column Operations

M. A. Armstrong

||g\left( {h\left( x \right)} \right) - g\left( {h\left( y \right)} \right)|| = ||h\left( x \right) - h\left( y \right)||


Archive | 1988

Finitely Generated Abelian Groups

M. A. Armstrong


Archive | 1988

Actions, Orbits, and Stabilizers

M. A. Armstrong

(2) because g is an isometry


Archive | 1983

The Fundamental Group

M. A. Armstrong

Collaboration


Dive into the M. A. Armstrong's collaboration.

Researchain Logo
Decentralizing Knowledge