Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M.A. Costa is active.

Publication


Featured researches published by M.A. Costa.


Reproductive Biomedicine Online | 2016

The endocrine function of human placenta: an overview

M.A. Costa

During pregnancy, several tightly coordinated and regulated processes take place to enable proper fetal development and gestational success. The formation and development of the placenta is one of these critical pregnancy events. This organ plays essential roles during gestation, including fetal nourishment, support and protection, gas exchange and production of several hormones and other mediators. Placental hormones are mainly secreted by the syncytiotrophoblast, in a highly and tightly regulated way. These hormones are important for pregnancy establishment and maintenance, exerting autocrine and paracrine effects that regulate decidualization, placental development, angiogenesis, endometrial receptivity, embryo implantation, immunotolerance and fetal development. In addition, because they are released into maternal circulation, the profile of their blood levels throughout pregnancy has been the target of intense research towards finding potential robust and reliable biomarkers to predict and diagnose pregnancy-associated complications. In fact, altered levels of these hormones have been associated with some pathologies, such as chromosomal anomalies or pre-eclampsia. This review proposes to revise and update the main pregnancy-related hormones, addressing their major characteristics, molecular targets, function throughout pregnancy, regulators of their expression and their potential clinical interest.


Placenta | 2015

The endocannabinoid anandamide induces apoptosis in cytotrophoblast cells: Involvement of both mitochondrial and death receptor pathways

M.A. Costa; B.M. Fonseca; Natércia Teixeira; Georgina Correia-da-Silva

INTRODUCTIONnA balanced proliferation, apoptosis and differentiation in trophoblast cells of the human placenta is crucial for a proper placental development. Alteration in trophoblast apoptosis and differentiation are associated with gestational-related complications, such as preeclampsia, intrauterine growth restriction or miscarriages. The endocannabinoids (eCBs) have been recognized as new interveners in pregnancy events such as implantation and decidualization. However, their importance in placentation is poorly understood. We hypothesise that these novel lipid mediators may intervene in cytotrophoblast apoptosis and, concomitantly, have a role during placental development.nnnMETHODSnprimary human cytotrophoblasts (hCTs) and the human trophoblast-like choriocarcinoma cell line BeWo cells were exposed to Anandamide (AEA). It was investigated the cellular pathways involved in cell death, by the assessment of cell morphology, caspases activity, mitochondrial membrane potential (Δψm), reactive oxygen/nitrogen species (ROS/RNS) and western blot of cleaved Poly (ADP-ribose) polymerase 1 (PARP-1), truncated Bid (t-Bid) and IκB-α.nnnRESULTSnAEA decreased hCTs viability and induced morphological features of apoptosis (chromatin condensation and fragmentation), caspase-3/7 activation and PARP-1 cleavage. In BeWo, AEA also increased the activities of caspase-3/7 and 9, induced loss in Δψm and production of ROS/RNS. These effects were reversed by either CB1 or CB2 antagonists, whereas the increase in caspase-3/7 activity was only reversed with CB2 blockage. AEA-treated cells showed increased caspase-8 activation and formation of t-Bid, suggesting the interplay between intrinsic and extrinsic apoptotic pathways. AEA also increased IκB-α expression, a NF-κB regulatory protein.nnnCONCLUSIONnOur results highlight the importance of eCBs in cytotrophoblast cell apoptosis and indicate that a crosstalk between intrinsic and extrinsic apoptotic pathways is involved in AEA-induced effects.


International Journal of Endocrinology | 2013

The Endocannabinoid System in the Postimplantation Period: A Role during Decidualization and Placentation.

B.M. Fonseca; Georgina Correia-da-Silva; Marta Almada; M.A. Costa; Natércia Teixeira

Although the detrimental effects of cannabis consumption during gestation are known for years, the vast majority of studies established a link between cannabis consumption and foetal development. The complex maternal-foetal interrelationships within the placental bed are essential for normal pregnancy, and decidua definitively contributes to the success of this process. Nevertheless, the molecular signalling network that coordinates strategies for successful decidualization and placentation are not well understood. The discovery of the endocannabinoid system highlighted new signalling mediators in various physiological processes, including reproduction. It is known that endocannabinoids present regulatory functions during blastocyst development, oviductal transport, and implantation. In addition, all the endocannabinoid machinery was found to be expressed in decidual and placental tissues. Additionally, endocannabinoids plasmatic levels were found to fluctuate during normal gestation and to induce decidual cell death and disturb normal placental development. Moreover, aberrant endocannabinoid signalling during the period of placental development has been associated with pregnancy disorders. It indicates the existence of a possible regulatory role for these molecules during decidualization and placentation processes, which are known to be particularly vulnerable. In this review, the influence of the endocannabinoid system in these critical processes is explored and discussed.


The International Journal of Biochemistry & Cell Biology | 2014

Transient receptor potential vanilloid 1 is expressed in human cytotrophoblasts: induction of cell apoptosis and impairment of syncytialization.

M.A. Costa; B.M. Fonseca; Elisa Keating; Natércia Teixeira; Georgina Correia-da-Silva

The normal development of placenta relies essentially on a balanced proliferation, differentiation and apoptosis of cytotrophoblasts. These processes are tightly regulated by several hormones, cytokines, lipids and other molecules and anomalies in these events are associated with gestational complications. The cation channel transient receptor potential vanilloid 1 (TRPV1) is expressed in several organs and tissues and it participates in cellular events like nociception, inflammation and cell death. However, the expression and importance of this receptor in human placenta still remains unknown. In this work, we found that TRPV1 is expressed in human cytotrophoblasts and syncytiotrophoblasts. Furthermore, the TRPV1 agonists capsaicin and anandamide decreased cytotrophoblast viability and induced morphological alterations, such as chromatin condensation and fragmentation, which suggest the occurrence of apoptosis. Also, both TRPV1 agonists induced a loss of mitochondrial membrane potential and an increase of caspase 3/7 activity and production of reactive species of oxygen and nitrogen. Furthermore, capsaicin (10 μM) impaired the spontaneous in vitro differentiation of cytotrophoblasts into syncytiotrophoblasts by triggering TRPV1, as observed by the decrease in placental alkaline phosphatase activity and in human chorionic gonadotropin secretion. On the other hand, anandamide decreased placental alkaline phosphatase activity via a TRPV1-independent mechanism but did not influence the secretion of human chorionic gonadotropin. In conclusion, we showed that TRPV1 is expressed in human cytotrophoblasts and syncytiotrophoblasts and also reported the involvement of this receptor in cytotrophoblast apoptosis and differentiation.


Reproduction | 2014

2-arachidonoylglycerol effects in cytotrophoblasts: metabolic enzymes expression and apoptosis in BeWo cells.

M.A. Costa; B.M. Fonseca; Elisa Keating; Natércia Teixeira; Georgina Correia-da-Silva

The major endocannabinoid (eCB) 2-arachidonoylglycerol (2-AG) is a member of the endocannabinoid system (ECS) that participates in cell proliferation and apoptosis, important events for the homoeostasis of biological systems. The formation of placenta is one of the most important stages of pregnancy and its development requires highly regulated proliferation, differentiation and apoptosis of trophoblasts. Anomalies in these processes are associated with gestational pathologies. In this work, we aimed to study the involvement of 2-AG in cytotrophoblast cell turnover. We found that 2-AG biosynthetic (diacylglycerol lipase A) and degradative (monoacylglycerol lipase) enzymes are expressed in human cytotrophoblasts and in BeWo cells. We also found that 2-AG induces a decrease in cell viability in a time- and concentration-dependent manner and exerts antiproliferative effects. The loss of cell viability induced by a 48-h treatment with 2-AG (10u200aμM) was accompanied by chromatin fragmentation and condensation, morphological features of apoptosis. Additionally, 2-AG induced an increase in caspase 3/7 and 9 activities, a loss of mitochondrial membrane potential (Δψm) and an increase in reactive oxygen species (ROS)/reactive nitrogen species (RNS) generation, suggesting the activation of the mitochondrial pathway. Moreover, whereas Δψm loss and ROS/RNS generation were significantly attenuated by the antagonists of both the cannabinoid receptors 1 and 2 (CB1 and CB2), the increase in caspase 3/7 and 9 activities and loss of cell viability were reversed only by the antagonist of CB2 receptor; the blockage of the eCB membrane transporter and the depletion of cholesterol failed to reverse the effects of 2-AG. Therefore, this work supports the importance of cannabinoid signalling during cytotrophoblast cell turnover and that its deregulation may be responsible for altered placental development and poor pregnancy outcomes.


Molecular and Cellular Endocrinology | 2015

2-Arachidonoylglycerol impairs human cytotrophoblast cells syncytialization: influence of endocannabinoid signalling in placental development.

M.A. Costa; Elisa Keating; B.M. Fonseca; Natércia Teixeira; Georgina Correia-da-Silva

A balanced cytotrophoblast cell turnover is crucial for placental development and anomalies in this process associated with gestational diseases. The endocannabinoid system (ECS) has emerged as a new player in several biological processes. However, its influence during placental development is still unknown. We report here the expression of the endocannabinoid 2-arachidonoylglycerol (2-AG) main metabolic enzymes in human cytotrophoblasts and syncytiotrophoblast. We also showed that 2-AG induced a decrease in placental alkaline phosphatase activity, human chorionic gonadotropin secretion and Leptin mRNA levels. Moreover, 2-AG reduced glial cell missing 1 and syncytin-2 transcription and the number of nuclei in syncytium. These effects were mediated by cannabinoid receptors and may result from 2-AG inhibition of the cAMP/PKA signalling pathway. Our data suggest that 2-AG may interfere with the biochemical and morphological differentiation of human cytotrophoblasts, through a CB receptor-dependent mechanism, shedding light on a role for the ECS in placental development.


Molecular and Cellular Endocrinology | 2016

Scrutinising the regulators of syncytialization and their expression in pregnancy-related conditions.

M.A. Costa

The placenta is important for the success of gestation and foetal development. In fact, this specialized pregnancy organ is essential for foetal nourishment, support, and protection. In the placenta, there are different cell populations, including four subtypes of trophoblasts. Cytotrophoblasts fuse and differentiate into the multinucleated syncytiotrophoblast (syncytialization). Syncytialization is a hallmark of placentation and is highly regulated by numerous molecules with distinct roles. Placentas from pregnancies complicated by preeclampsia, intrauterine growth restriction or trisomy 21 have been associated with a defective syncytialization and an altered expression of its modulators. This work proposes to review the molecules that promote or inhibit both fusion and biochemical differentiation of cytotrophoblasts. Moreover, it will also analyse the syncytialization modulators abnormally expressed in pathological placentas, highlighting the molecules that may contribute to the aetiology of these diseases.


Toxicology | 2015

The psychoactive compound of Cannabis sativa, Δ9-tetrahydrocannabinol (THC) inhibits the human trophoblast cell turnover

M.A. Costa; B.M. Fonseca; F. Marques; Natércia Teixeira; Georgina Correia-da-Silva

The noxious effects of cannabis consumption for fertility and pregnancy outcome are recognized for years. Its consumption during gestation is associated with alterations in foetal growth, low birth weight and preterm labor. The main psychoactive molecule of cannabis, Δ(9)-tetrahydrocannabinol (THC) impairs the production of reproductive hormones and is also able to cross the placenta barrier. However, its effect on the main placental cells, the trophoblasts, are unknown. Actually, the role of THC in cell survival/death of primary human cytotrophoblasts (CTs) and syncytiotrophoblasts (STs) and in the syncytialization process remains to be explored. Here, we show that THC has a dual effect, enhancing MTT metabolism at low concentrations, whereas higher doses decreased cell viability, on both trophoblast phenotypes, though the effects on STs were more evident. THC also diminished the generation of oxidative and nitrative stress and the oxidized form of glutathione, whereas the reduced form of this tripeptide was increased, suggesting that THC prevents ST cell death due to an antioxidant effect. Moreover, this compound enhanced the mitochondrial function of STs, as observed by the increased MTT metabolism and intracellular ATP levels. These effects were independent of cannabinoid receptors activation. Besides, THC impaired CT differentiation into STs, since it decreased the expression of biochemical and morphological biomarkers of syncytialization, through a cannabinoid receptor-dependent mechanism. Together, these results suggest that THC interferes with trophoblast turnover, preventing trophoblast cell death and differentiation, and contribute to disclose the cellular mechanisms that lead to pregnancy complications in women that consume cannabis-derived drugs during gestation.


Biochimica et Biophysica Acta | 2016

The endocannabinoid 2-arachidonoylglycerol dysregulates the synthesis of proteins by the human syncytiotrophoblast.

M.A. Costa; B.M. Fonseca; A. Mendes; J. Braga; Natércia Teixeira; Georgina Correia-da-Silva

In recent years, endocannabinoids emerged as new players in various reproductive events. Recently, we demonstrated the involvement of 2-arachidonoylglycerol (2-AG) in human cytotrophoblast apoptosis and syncytialization. However, 2-AG impact in hormone production by the syncytiotrophoblast (hST) was never studied. In this work, we demonstrate that 2-AG activates cannabinoid (CB) receptors, exerting an inhibitory action on cyclic AMP/protein kinase A (cAMP/PKA) and mitogen-activated protein kinase (MAPK) p38 pathways, and enhancing ERK 1/2 phosphorylation. Furthermore, 2-AG affects the synthesis of human chorionic gonadotropin (hCG), leptin, aromatase, 3-β-hydroxysteroid dehydrogenase (3-β-HSD), and placental protein 13 (PP13). These 2-AG effects are mediated by the activation of CB receptors, in a mechanism that may involve p38, ERK 1/2 and cAMP/PKA pathways, which participate in the regulation of placental proteins expression. To our knowledge, this is the first study that associates the endocannabinoid signalling and endocrine placental function, shedding light on a role for 2-AG in the complex network of molecules that orchestrate the production of placental proteins essential for the gestational success.


Cell and Tissue Research | 2015

The endocannabinoid anandamide affects the synthesis of human syncytiotrophoblast-related proteins

M.A. Costa; B.M. Fonseca; A. Mendes; J. Braga; Natércia Teixeira; Georgina Correia da Silva

The human syncytiotrophoblast (hST) has a major role in the production of important placental hormones. Several molecules regulate hST endocrine function but the role of endocannabinoids in this process is still unknown. Here, we report that the endocannabinoid anandamide (AEA) decreased cAMP levels, impaired human chorionic gonadotropin secretion, placental alkaline phosphatase activity and decreased aromatase mRNA levels and protein expression, through cannabinoid (CB) receptor activation. AEA also downregulated leptin and placental protein 13 transcription, though via a CB receptor-independent mechanism. All this evidence suggests AEA is a novel modulator of hormone synthesis by the syncytiotrophoblast, supporting the importance of the endocannabinoid signalling in placental function.

Collaboration


Dive into the M.A. Costa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge