Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. A. Egorova is active.

Publication


Featured researches published by M. A. Egorova.


Microbiology | 2003

Activity of the Enzymes of Carbon Metabolism in Sulfobacillus sibiricus under Various Conditions of Cultivation

L. M. Zakharchuk; M. A. Egorova; I. A. Tsaplina; T. I. Bogdanova; E. N. Krasil'nikova; V. S. Melamud; G. I. Karavaiko

The thermoacidophilic iron-oxidizing chemolithotroph Sulfobacillus sibiricus N1T is characterized by steady growth and amplified cell yield when grown in vigorously aerated medium containing Fe2+, glucose, and yeast extract as energy sources. In this case, carbon dioxide, glucose, and yeast extract are used as carbon sources. Glucose is assimilated through the fructose-bisphosphate pathway and the pentose-phosphate pathway. The glyoxylate bypass does not function in S. sibiricus, and the tricarboxylic acid cycle is disrupted at the level of 2-oxoglutarate dehydrogenase. The presence of ribulose-bisphosphate carboxylase indicates that carbon dioxide fixation proceeds through the Calvin cycle. The activity of ribulose-bisphosphate carboxylase is highest in autotrophically grown cells. The cells also contain pyruvate carboxylase, phosphoenolpyruvate carboxylase, phosphoenolpyruvate carboxykinase, and phosphoenolpyruvate carboxytransphosphorylase.


Applied Biochemistry and Microbiology | 2004

Effect of Cultivation Conditions on the Growth and Activities of Sulfur Metabolism Enzymes and Carboxylases of Sulfobacillus thermosulfidooxidans subsp. asporogenes Strain 41

M. A. Egorova; I. A. Tsaplina; L. M. Zakharchuk; T. I. Bogdanova; E. N. Krasil'nikova

The moderately thermophilic acidophilic bacterium Sulfobacillus thermosulfidooxidans subsp. asporogenes strain 41 is capable of utilizing sulfides of gold–arsenic concentrate and elemental sulfur as a source of energy. Growth in the presence of S0 under auto- or mixotrophic conditions was less stable than in media containing iron monoxide. The enzymes involved in the oxidation of sulfur inorganic compounds—thiosulfate-oxidizing enzyme, tetrathionate hydrolase, rhodanase, adenylyl phosphosulfate reductase, sulfite oxidase, and sulfur oxygenase—were determined in the cells of the sulfobacilli grown in mineral medium containing 0.02% yeast extract and either sulfur or iron monoxide and thiosulfate. Cell-free extracts of the cultures grown in the medium with sulfur under auto- or mixotrophic conditions displayed activity of the key enzyme of the Calvin cycle—ribulose bisphosphate carboxylase—and several other enzymes involved in the heterotrophic fixation of carbon dioxide. Activities of carboxylases depended on the composition of the cultivation media.


Microbiology | 2010

Response to oxygen limitation in bacteria of the genus sulfobacillus

I. A. Tsaplina; A.E. Zhuravlev; M. A. Egorova; T.I. Bogdanov; E. N. Krasil’nikova; L. M. Zakharchuk; T.F. Kondrat’ev

For cultures of moderately thermophilic chemolithotrophic bacteria Sulfobacillus sibiricus N1 and SSO, S. thermosulfidooxidans subsp. asporogenes 41, and the thermotolerant strain S. thermotolerans Kr1 grown under forced aeration and in a high medium layer without aeration, growth characteristics, substrate consumption, and exometabolite formation were compared. Sulfobacilli grown under oxygen limitation exhibited greater generation time, longer growth period, cell yield decreased by from 40 to 85% (depending on the strain), suppressed cell respiration ( demonstrated for S. sibiricus N1 ), accumulation of exometabolites (acetate and propionate) in the medium, and emergence of resting forms. For strains N1, SSO, and Kr1, oscillations of Fe(II) and Fe(III) content in the medium were revealed. For S. sibiricus N1 and S. thermotolerans Kr1, grown under hypoxia (0.07% O2 in the gas phase), coupling of substrate oxidation with Fe(III) reduction was revealed, as well as utilization of Fe(III) as an electron acceptor alternative to oxygen. The role of labile energy and constructive metabolism for survival of sulfobacilli under diverse conditions is discussed.


Applied Biochemistry and Microbiology | 2012

Biogas Production by Microbial Communities via Decomposition of Cellulose and Food Waste

E. A. Tsavkelova; M. A. Egorova; E. V. Petrova; A. I. Netrusov

Several active microbial communities that form biogas via decomposition of cellulose and domestic food waste (DFW) were identified among 24 samples isolated from different natural and anthropogenic sources. The methane yield was 190–260 ml CH4/g from microbial communities grown on cellulose substrates, office paper, and cardboard at 37°C without preprocessing. Under mesophilic conditions, bioconversion of paper waste yields biogas with a methane content from 47 to 63%; however, the rate of biogas production was 1.5–2.0 times lower than under thermophilic conditions. When microbial communities were grown on DFW under thermophilic conditions, the most stable and effective of them produced 230–353 ml CH4/g, and the methane content in biogas was 54–58%. These results demonstrates the significance of our studies for the development of a technology for the biotransformation of paper waste into biogas and for the need of selection of microbial communities to improve the efficiency of the process.


Microbiology | 2010

Regulation of metabolic pathways in sulfobacilli under different aeration regimes

E. N. Krasil’nikova; L. M. Zakharchuk; M. A. Egorova; T. I. Bogdanova; A. E. Zhuravleva; I. A. Tsaplina

A comparative study of the activities of the enzymes of carbon metabolism from the cells of moderately thermophilic chemolithotrophic bacteria Sulfobacillus sibiricus (strains N1 and SSO) and Sulfobacillus thermosulfidooxidans subsp. asporogenes (strain 41) was carried out grown in a high layer of medium without forced aeration and cells grown with intense aeration. Limited air access to the growing S. sibiricus N1 cells resulted in switching from the pentose phosphate pathway of glucose metabolism to the Entner-Doudoroff pathway while the Embden-Meyerhof-Parnas pathway persisted. Irrespective of the level of the aeration, in the cells of S. sibiricus SSO and S. thermosulfidooxidans subsp. asporogenes 41, degradation of the glucose occurred via the Entner-Doudoroff and pentose phosphate metabolic pathways, respectively, as well as via the Embden-Meyerhof-Parnas pathway. Prolonged growth of S. sibiricus, strains N1 and SSO, in a high layer of the medium without forced aeration led to the repression of synthesis of most of the tricarboxylic acid cycle (TCA cycle) enzymes, in particular dehydrogenases, as well as of some carboxylases including RuBisCO. The traits of carbon metabolism in various strains of Sulfobacillus under conditions of oxygen deficiency are discussed.


Microbiology | 2008

Phenotypic properties of Sulfobacillus thermotolerans: Comparative aspects

I. A. Tsaplina; E. N. Krasil’nikova; A. E. Zhuravleva; M. A. Egorova; L. M. Zakharchuk; N. E. Suzina; V. I. Duda; T. I. Bogdanova; Igor N. Stadnichuk; T. F. Kondrat’eva

The phenotypic characteristics of the species Sulfobacillus thermotolerans Kr1T, as dependent on the cultivation conditions, are described in detail. High growth rates (0.22–0.30 h−1) and high oxidative activity were recorded under optimum mixotrophic conditions at 40 °C on medium with inorganic (Fe(II), S0, or pyrite-arsenopyrite concentrate) and organic (glucose and/or yeast extract) substrates. In cells grown under optimum conditions on medium with iron, hemes a, b, and, most probably, c were present, indicating the presence of the corresponding cytochromes. Peculiar extended structures in the form of cylindrical cords, never observed previously, were revealed; a mucous matrix, likely of polysaccharide nature, occurred around the cells. In the cells of sulfobacilli grown litho-, organo-, and mixotrophically at 40 °C, the enzymes of the three main pathways of carbon utilization and some enzymes of the TCA cycle were revealed. The enzyme activity was maximum under mixotrophic growth conditions. The growth rate in the regions of limiting temperatures (55 °C and 12–14 °C) decreased two-and tenfold, respectively; no activity of 6-phosphogluconate dehydrogenase, one of the key enzymes of the oxidative pentose phosphate pathway, could be revealed; and a decrease in the activity of almost all enzymes of glucose metabolism and of the TCA cycle was observed. The rate of 14CO2 fixation by cells under auto-, mixo-, and heterotrophic conditions constituted 31.8, 23.3, and 10.3 nmol/(h mg protein), respectively. The activities of RuBP carboxylase (it peaked during lithotrophic growth) and of carboxylases of heterotrophic carbon dioxide fixation were recorded. The physiological and biochemical peculiarities of the thermotolerant bacillus are compared versus moderately thermophilic sulfobacilli.


Plant Growth Regulation | 2016

Dendrobium nobile Lindl. seed germination in co-cultures with diverse associated bacteria

E. A. Tsavkelova; M. A. Egorova; Maria R. Leontieva; Sophie G. Malakho; G. L. Kolomeitseva; A. I. Netrusov

Abstract The conservation of orchids is challenging due to their strong biotic relations and tiny seeds, requiring mycorrhiza for germination. This is aggravated when tropical plants are maintained in artificial conditions of greenhouses. We aimed to select the plant growth promoting rhizobacteria (PGPR) for orchid seed germination, to study plant–microbial interactions, and to determine whether there is any specificity between two species of Dendrobium plants in choosing bacterial partners. By the isolation of rhizoplane and endophytic rhizobacteria from Dendrobium moschatum roots, the known PGPR (Azospirillum, Enterobacter, Streptomyces) and less popular (Roseomonas, Agrococcus) strains were tested for the production of biologically active auxin. The bacterization of another orchid, D. noblie, with several newly selected strains and previously isolated ones (Mycobacterium sp., Bacillus pumilus) revealed that the orchids did not express evident specificity in relations with favorable bacteria, but refused to establish associations with Streptomyces and Azospirillum. Endophytic Agrococcus and Sphingomonas strains showed significant promotion of orchid germination. Mycobacterium and B. pumilus were also stable in their positive influence on the acceleration of D. noblie seed development. The active colonization of the seed surface and the inner tissues by associated bacteria was observed under electron microscopy. The analysis of orchid–bacteria relations was made. Altogether, the data shows that selection provides a good strategy for choosing the active strains for orchid seeds’ bacterization, since not all known PGPR are useful and successful in building associative frameworks with orchid seeds. The stable activity of the strains guarantees their long-term and effective application in orchid in vitro biotechnology.


Moscow University Biological Sciences Bulletin | 2012

Thermophilic anaerobic microbial communities that transform cellulose into methane (biogas)

E. A. Tsavkelova; M. A. Egorova; E. V. Petrova; A. I. Netrusov

The project is devoted to the screening of active anaerobic microbial communities which produce biogas via the decomposition of cellulose in thermophilic conditions (+55°C). Twenty-four samples were isolated from different natural and anthropogenic sources that contain desired microbial organisms. Growth medium was chosen to optimize the conditions for proliferation and selection of cellulolytic and methanogenic microorganisms. During the study of biogas formation dynamics, the most productive communities that remain active during five passages were selected. The biogas composition (methane, carbon dioxide, hydrogen) was investigated by gas chromatography. On average, the methane content in the gas mixture reached 60%. Microscopic studies revealed the presence of various morphotypes of microbial cells; their ratio varied during the stabilization of communities. The significance of the research on the transformation of cellulose into biogas is discussed.


Microbiology | 2002

The enzymes of carbon metabolism in the thermotolerant bacillar strain K1

G. I. Karavaiko; L. M. Zakharchuk; T. I. Bogdanova; M. A. Egorova; I. A. Tsaplina; E. N. Krasil'nikova

To determine enzymatic activities in the thermotolerant strain K1 (formerly “Sulfobacillus thermosulfidooxidans subsp. thermotolerans”), it was grown in a mineral medium with (1) thiosulfate and Fe2+ or pyrite (autotrophic conditions), (2) Fe2+, thiosulfate, and yeast extract or glucose (mixotrophic conditions), and (3) yeast extract (heterotrophic conditions). Cells grown mixo-, hetero-, and autotrophically were found to contain enzymes of the tricarboxylic acid (TCA) cycle, as well as malate synthase, an enzyme of the glyoxylate cycle. Cells grown organotrophically in a medium with yeast extract exhibited the activity of the key enzymes of the Embden–Meyerhof–Parnas and Entner–Doudoroff pathways. The increased content of carbon dioxide (up to 5 vol %) in the auto- and mixotrophic media enhanced the activity of the enzymes involved in the terminal reactions of the TCA cycle and the enzymes of the pentose phosphate pathway. Carbon dioxide is fixed in the Calvin cycle. The highest activity of ribulose bisphosphate carboxylase was detected in cells grown autotrophically at the atmospheric content of CO2 in the air used for aeration of the growth medium. The activities of pyruvate carboxylase, phosphoenolpyruvate carboxylase, phosphoenolpyruvate carboxykinase, and phospho-enolpyruvate carboxytransphosphorylase decreased with increasing content of CO2 in the medium.


Applied Biochemistry and Microbiology | 2016

Biodegradation of Cellulose-Containing Substrates by Micromycetes Followed by Bioconversion into Biogas

Ljuba Prokudina; A. A. Osmolovskiy; M. A. Egorova; Dina V. Malakhova; A. I. Netrusov; E. A. Tsavkelova

The ability of micromycetes Trichoderma viride and Aspergillus terreus to decompose the cellulosecontaining substrates was studied. Office paper and cardboard, as well as a paper mixture, were found to be the most hydrolyzable. The cellulolytic activity of T. viride was 2–3 times higher than that of A. terreus; the highest values of 0.80 and 0.73 U/mL were obtained from office paper and the mixture of different types of paper, respectively. The micromycete cultivation conditions (composition of culture medium, sucrose cosubstrate addition, seeding technique) and the conditions of the fungus biomass treatment for its subsequent bioconversion into biogas by anaerobic microbial communities were optimized. It was shown that pretreatment improves the efficiency of biogas production from lignocellulosic materials when inoculated with microbial community of cattle manure. After pretreatment of the Jerusalem artichoke phytomass (stems and leaves) and its subsequent bioconversion into biogas by methanogenic community, the biogas yield was increased by1.5 times.

Collaboration


Dive into the M. A. Egorova's collaboration.

Top Co-Authors

Avatar

I. A. Tsaplina

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

T. I. Bogdanova

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. E. Zhuravleva

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge