M. A. Rogov
Russian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M. A. Rogov.
Stratigraphy and Geological Correlation | 2007
V. Houša; Petr Pruner; Victor A. Zakharov; M. Kostak; Martin Chadima; M. A. Rogov; Stanislav Šlechta; Martin Mazuch
As a result of detail sampling and paleomagnetic study of the 27-m-thick section of Jurassic-Cretaceous boundary beds in the Nordvik Peninsula (Anabar Bay, Laptev Sea), a succession of M-zones correlative with chrons M20n-M17r is established for the first time in the Boreal deposits. Inside the normal polarity zone corresponding to Chron M20n, a thin interval of reversed polarity, presumably an equivalent of the Kysuca Subzone (M20n.1r), is discovered. The other thin interval of reversed polarity established within the next normal polarity zone (M19n) is correlated with the Brodno Subzone (M19n.1r). The same succession of normal and reversed polarity zones has been discovered recently in the Jurassic-Cretaceous boundary beds of the Tethyan sections: in the Bosso Valley (Italy), at the Brodno (Slovak Republic) and Puerto Escaño (Spain) sites. Correlation of successions established lead us to conclusion, that the Jurassic-Cretaceous boundary corresponds in the Panboreal Superrealm to a level within the Craspedites taimyrensis Zone of the upper Volgian Substage. Hence, the greatest part of Volgian Stage should be included into the Jurassic System. Biostratigraphic data do not contradict this conclusion.
Polar Research | 2014
Victor A. Zakharov; M. A. Rogov; Oksana S. Dzyuba; Karel Žák; Martin Košt’ák; Petr Pruner; Petr Skupien; Martin Chadima; Martin Mazuch; B.L. Nikitenko
The Jurassic/Cretaceous transition was accompanied by significant changes in palaeoceanography and palaeoenvironments in the Tethyan Realm, but outside the Tethys such data are very scarce. Here we present results of a study of the most complete section in the Panboreal Superrealm, the Nordvik section. Belemnite δ18O data show an irregular decrease from values reaching up to +1.6‰ in the Middle Oxfordian and from +0.8 to −1.7‰ in the basal Ryazanian, indicating a prolonged warming. The biodiversity changes were strongly related to sea-level oscillations, showing a relatively low belemnite and high ammonite diversity during sea-level rise, accompanied by a decrease of the macrobenthos taxonomical richness. The most prominent sea-level rise is marked by the occurrence of open sea ammonites with Pacific affinities. Peak abundances of spores and prasinophytes correlate with a negative excursion in organic carbon δ13C near the J/K boundary and could reflect blooms of green algae caused by disturbance of the marine ecosystem.
Stratigraphy and Geological Correlation | 2008
V. A. Zakharov; M. A. Rogov
Section of the middle and upper Volgian substages and basal Boreal Berriasian in the Cape Urdyuk-Khaya (Nordvik Peninsula) is largely composed of dark argillites substantially enriched in Corg. Characteristic of the section is a continuous succession of ammonite, foraminiferal, ostracode, and dinocyst zones known also in the other Arctic areas. Boundaries of the upper Volgian Substage are recognizable only based on biostratigraphic criteria. The succession of the middle Volgian Taimyrosphinctes excentricus to basal Ryazanian Hectoroceras kochi zones is characterized. The range of the substage is revised. The lower Exoticus Zone, where ammonites characteristic of the Nikitini Zone upper part in the East European platform have been found, is referred to the middle Volgian Substage. Newly found ammonites are figured. Two possible positions of the Jurassic-Cretaceous boundary in the Arctic region, i.e., at the lower and upper boundaries of the Chetae Zone at the top of the upper Volgian Substage, are discussed.
Stratigraphy and Geological Correlation | 2010
M. A. Rogov
The stratigraphy of the Volgian in Spitzbergen is refined based on the new fossil collections. The lower Volgian is poorly characterized by ammonites being not subdivided into zones, and the only recognized stratigraphic unit within it are the Beds with Paravirgatites sp. in the upper part of the lower Volgian. The Pavlovia rugosa, Dorsoplanites ilovaiskii, Crendonites anguinus, and Praechetaites exoticus zones, the antiquus, erschovae, sachsi, sokolovi, laevigatus, and lambecki faunal horizons, and Beds with Laugeites cf. groenlandicus are recognized for the first time in the middle Volgian of Spitzbergen. Two successive levels are identified in the upper Volgian Craspedites okensis Zone characterized by differing morphotypes of Craspedites okensis. The Craspedites taimyrense Zone is proposed instead of the Craspedites nodiger Zone. No ammonites of the terminal Volgian Chetaites chetae Zone have so far been found in Spitzbergen. New species of Epivirgatites sokolovi sp. nov., E. laevigatus sp. nov., Praechetaites erschovae sp. nov., and P. confusus sp. nov. are described. The diagnosis of the genus Praechetaites is expanded.
Stratigraphy and Geological Correlation | 2007
D. N. Kiselev; M. A. Rogov
In European Russia, the most complete succession of Boreal sediments of the terminal Bathonian and lower Callovian is exposed near the Prosek Settlement. After its revision, the infrazonal division of the upper Bathonian and lower Callovian and position of the Bathonian-Callovian boundary are difined more carefully. The Calyx Zone and bodylevskyi Biohorizon are established in the upper Bathonian. The base of the lower Callovian is defined at the first occurrence level of Macrocephalites jacquoti. Based on four successive ammonite assemblages occurring in lower part of the Elatmae Zone, the breve, frearsi, quenstedti, and elatmae biohorizons are identified. The joint occurrence of Boreal, Subboreal, and Tethyan ammonites in the section facilitate its correlation with the other sections of the Panboreal paleobiogeographic superrealm.
Stratigraphy and Geological Correlation | 2006
V. V. Arkad’ev; M. A. Rogov
Based on ammonites, Upper Kimmeridgian sediments are first established in the Crimean Mountains. The Kimmeridgian-Tithonian boundary recognizable in a continuous section is placed inside the Dvuyakomaya Formation of uniform largely clayey sediments. Assemblages of Kimmeridgian ammonites Lingulaticeras cf. procurvum (Ziegler), Pseudowaagenia gemmellariana Oloriz, Euvirgalithacoceras cf. tantalus (Herbich), Subplanites sp.) and Tithonian forms (?Lingulaticeras efimovi (Rogov), Phylloceras consaguineum Gemmellaro, Oloriziceras cf. schneidi Tavera, and Paraulacosphinctes cf. transitorius (Oppel) are described. A new biostratigraphic scheme proposed for the upper Tithonian-Berriasian of the Crimean Mountains includes the following new biostratigraphic units: the Euvirgalithacoceras cf. tantalus Beds of the upper Kimmeridgian, ?Lingulaticeras efimovi Beds of the lower Tithonian, and Oloriziceras cf. schneidi and Paraulacosphinctes cf. transitorius beds of the upper Tithonian. The middle Tithonian is proposed to consist of the fallauxi and semiforme (presumably) zones. The ammonities found determine the early Kimmeridgian-Berriasian age of the Dvuyakornaya Formation that is most likely in tectonic contact with the underlying Khutoran Formation.
Stratigraphy and Geological Correlation | 2010
A. V. Solov’ev; M. A. Rogov
The fission-track dating of detrital zircon from Mesozoic terrigenous complexes of the Crimean mountains has been carried out for the first time. A young zircon population from the Tavria Group of sandstones of the Yaman ravine was dated at 220.1 ± 12.6 Ma, and the zircon population from the same deposits of the Crimea’s southern coast, at 193.6 ± 13.1, 167.1 ± 12.1, and 154.0 ± 10.2 Ma. Sandstones from the lowermost parts of the Demerdzhi Formation on Mount Yuzhnaya Demerdzhi comprise the Middle Jurassic young zircon population (169.9 ± 8.6 Ma). The age of the young zircon population from the Chenka Formation in the region of the Settlement of Observatoriya corresponds to the initial Middle Jurassic (178.9 ± 9.1 Ma). The timing of the cooling of the Mount Kastel massif was established at 149.0 ± 10.9 Ma. In all the considered cases, the age of terrigenous complexes is close to the age of enclosed zircons. Volcanic and/or magmatic rocks that formed synchronously with accumulation of terrigenous complexes in the sedimentary basin are likely to have been sources of zircons. Hence, the data obtained allow the timing of the Triassic-Jurassic magmatism in the Crimean mountains to be refined and three stages of magmatism to be distinguished: Late Triassic (Carnian?), poorly expressed Early Jurassic, and Middle Jurassic (Aalenian-Bathonian).
Rivista Italiana di Paleontologia e Stratigrafia (Research In Paleontology and Stratigraphy) | 2004
M. A. Rogov
A review of the ammonite faunas and biostratigraphy of the uppermost Kimmeridgian - lowermost Middle Volgian of Central Russia is presented. The major role of the Sub-mediterranean ammonites in the Volgian assemblages is described, providing additional detail to the existing scheme of Tithonian-Volgian correlations. The base of the Tithonian and the base of the Volgian are coincident, based on the association of Neochetoceras steraspis-Lingulaticeras solenoides . The Klimovi Zone corresponds to most of the Hybonotum Zone. However, the top of the Hybonotum Zone, based on the distribution of Paralingulaticeras , falls within the Sokolovi Zone. The allocation of a Tenuicostata Subzone (with two horizons: neoburgense and puschi ) in the Pseudoscythica Zone is proven. The neoburgense horizon may be correlated with the ciliata and penicillatum horizons of Neuburg and, probably, with the Semiforme Zone. The findings of Lingulaticeras blaschkei , Pseudolissoceras, and Sutneria in the Panderi Zone of the Middle Tithonian suggest that the base of the Middle Volgian may not be younger than the Middle Tithonian Fallauxi Zone.
Stratigraphy and Geological Correlation | 2012
M. A. Rogov; D. B. Gulyaev; D. N. Kiselev
The biohorizons (faunal horizons) as infrazonal units are the smallest correlatable biostratigraphic units. Their main features are: (1) potential indivisibility based on taxonomic differentiation of guide fossils; (2) determinancy of both lower and upper boundaries in the geological section; (3) identification by a single index species/subspecies. First such units were defined at the end of the 19th century and since the 1980s have been widely used in biostratigraphic investigations of Jurassic and, later, Cretaceous systems. The biohorizons are characterized by phylogenetic or immigrational paleobiological nature and geologically they are connected with depositional and postdepositional transformation (and, consequently, structure) of the sedimentary succession. Based on parallel sequences of phylogenetic and separate immigrational biohorizons, they are integrated into different zonal scales and an integrated regional scale. The problems related to the lack of universal criteria for defining and using biohorizons are discussed. The basic nomenclature rules, which are aimed at regulation of the use of these units in practical stratigraphic investigations, are suggested for their recognition and description.
Geology | 2017
Chloé Morales; M. A. Rogov; Hubert Wierzbowski; Victoria B. Ershova; Guillaume Suan; Thierry Adatte; Karl B. Föllmi; Erik W. Tegelaar; Gert-Jan Reichart; Gert J. de Lange; Jack J. Middelburg; Bas van de Schootbrugge
During the Phanerozoic, Earth has experienced a number of transient global warming events associated with major carbon cycle perturbations. Paradoxically, many of these extreme greenhouse episodes are preceded or followed by cold climate, perhaps even glacial conditions, as inferred from the occurrence of glendonites in high latitudes. Glendonites are pseudomorphs of ikaite (CaCO3 center dot 6H(2)O), a hydrated carbonate mineral increasingly stable at low temperatures. Here, we show that methane seepage and oxidation provide an overriding control on Mesozoic glendonite formation (i. e., ikaite fossilization). Geochemical and petrological analyses of 33 Early Jurassic to Early Cretaceous glendonites from five sections in Siberia (Russia) reveal that most of their infilling carbonate phases are reminiscent of methane- derived authigenic carbonates. Bulk glendonites and surrounding sediments exhibit exceptionally high and low carbon isotope values (+20% to -45% VPDB [Vienna Peedee belemnite]), typical for carbon sources linked to methane generation and oxidation. Gas inclusion data confirm the presence of methane and longer-chain hydrocarbon gases, suggesting a thermogenic source for the methane. Glendonitebearing layers can be traced for hundreds of kilometers, suggesting widespread trapping of methane in the sub-seafloor during the Jurassic. As such, glendonites constitute an unexplored archive for detecting past episodes of methane release and oxidation in polar settings.