Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M.A. Scheglov is active.

Publication


Featured researches published by M.A. Scheglov.


international conference on infrared, millimeter, and terahertz waves | 2004

Status of the Novosibirsk high power free electron laser

V.P. Bolotin; D.A. Kayran; Boris A. Knyazev; E.I. Kolobanov; V.V. Kotenkov; V. V. Kubarev; G.N. Kulipanov; A.N. Matveenko; L.E. Medvedev; S.V. Miginsky; L.A. Mironenko; A.D. Oreshkov; V.K. Ovchar; V.M. Popik; T.V. Salikova; S.S. Serednyakov; A.N. Skrinsky; O.A. Shevchenko; M.A. Scheglov; N.A. Vinokurov; N.S. Zaigraeva

The first stage of Novosibirsk high power free electron laser (FEL) was commissioned in 2003. It is based on normal conducting CW energy recovery linac. Now the FEL provides electromagnetic radiation in the wavelength range 120-180 micron. The average power is 100 W. The measured linewidth is 0.3%, which is close to the Fourier-transform limit. The assembly of user beamline is in progress. Plans of future developments are discussed.


joint international conference on infrared millimeter waves and international conference on teraherz electronics | 2006

Harmonic Generation in the Novosibirsk Terahertz Free Electron Laser

V. V. Kubarev; N.A. Vinokurov; V.V. Kotenkov; G.N. Kulipanov; A.N. Matveenko; T.V. Salikova; S.S. Serednyakov; M.A. Scheglov

At the present time, the radiation of the main first harmonic of the Novosibirsk terahertz free electron laser (FEL) lies in the range of 120-230 mum with power level of up to 400 W. The radiation of second and third harmonics was experimentally found in the FEL. This high harmonic FEL radiation extends its spectral range by a factor of 3. Rather high second harmonic radiation unusual for typical FEL allows uninterrupted radiation in the range of 40-230 mum.


international conference on infrared, millimeter, and terahertz waves | 2005

Quasi-continuous sub-millimeter optical discharge on Novosibirsk free electron laser: experiments and elementary theory

V.P. Bolotin; Boris A. Knyazev; E.I. Kolobanov; V.V. Kotenkov; V.V. Kubarev; G.N. Kulipanov; A.N. Matveenko; L.E. Medvedev; A.D. Oreshkov; B.Z. Persov; V.M. Popik; T.V. Salikova; S.S. Serednyakov; O.A. Shevchenko; M.A. Scheglov; N.A. Vinokurov

The first quasi-continuous optical discharge in near sub-millimeter spectral range was demonstrated on high-power Novosibirsk free electron laser. Experimental results and elementary theory of this phenomenon are presented.


international conference on infrared, millimeter, and terahertz waves | 2005

Novosibirsk terahertz free electron laser: status and survey of experimental results

V.P. Bolotin; Valery S. Cherkassky; E.N. Chesnokov; Boris A. Knyazev; E.I. Kolobanov; V.V. Kotenkov; A.S. Kozlov; V.V. Kubarev; G.N. Kulipanov; A.N. Matveenko; L.E. Medvedev; S.V. Miginsky; L.A. Mironenko; A.D. Oreshkov; V.K. Ovchar; A.K. Petrov; V.M. Popik; P.D. Rudych; T.V. Salikova; S.S. Serednyakov; A.N. Skrinsky; O.A. Shevchenko; M.A. Scheglov; M.B. Taraban; N.A. Vinokurov; N.S. Zaigraeva

During the past year, generation characteristics of the Novisibirsk terahertz free electron laser were growing up. It generates now coherent radiation tunable in the range 120-170 /spl mu/m at the repetition rate of 2.8-11.2 MHz. Maximum average output power reaches 400 W at 11.2 MHz. Laser radiations are transmitted through a 14-m optical beamline to the user stations. Experiments on chemistry, biology, spectroscopy, imaging and holography with employment of terahertz radiation are in progress.


international conference on infrared, millimeter, and terahertz waves | 2009

High power THz applications on the NovoFEL

R. R. Akberdin; E. N. Chesnokov; M. A. Dem'yanenko; D. G. Esaev; T. N. Goryachevskaya; A. E. Klimov; Boris A. Knyazev; E.I. Kolobanov; A. S. Kozlov; V. V. Kubarev; G.N. Kulipanov; Sergei A. Kuznetsov; A.N. Matveenko; L.E. Medvedev; E. V. Naumova; A. V. Okotrub; V.K. Ovchar; Konstantin S. Palagin; N. S. Paschin; S. G. Peltek; A. K. Petrov; V. Ya. Prinz; V.M. Popik; T.V. Salikova; S.S. Serednyakov; A.N. Skrinsky; O.A. Shevchenko; M.A. Scheglov; N.A. Vinokurov; Maxim G. Vlasenko

High power THz applications on the Novosibirsk terahertz free electron laser are described.


international conference on infrared, millimeter, and terahertz waves | 2007

Fourier spectroscopy of water vapor absorption in 40 m optical transport channel of the NovoFEL

V. V. Kubarev; N.A. Vinokurov; Evgeny I. Kolobanov; Vladimir V. Kotenkov; G.N. Kulipanov; Aleksandr N. Matveenko; Tatiyana V. Salikova; S.S. Serednyakov; M.A. Scheglov

Radiation of the Novosibirsk terahertz free electron laser (NovoFEL) is transported to user stations by a 40 m long optical channel. A high vacuum volume of the NovoFEL and the optical channel are separated by a CVD-diamond window. Because of a sufficiently large size of submillimeter beams and the absence of chip and firm vacuum windows of an adequate size, we use a nitrogen-filled channel at normal atmospheric pressure and thin polypropylene windows for radiation coupling on the user stations. The main problem of the long channel is water vapor absorption. A special system of drying with round circulation was made on the basis of a zeolite absorber. A combination of Fourier and free electron laser spectroscopy of the system is presented in this paper.


joint international conference on infrared millimeter waves and international conference on teraherz electronics | 2006

Observation of Sideband Instability in the Novosibirsk Terahertz Free Electron Laser

V. V. Kubarev; N.A. Vinokurov; V.V. Kotenkov; G.N. Kulipanov; A.N. Matveenko; T.V. Salikova; S.S. Serednyakov; M.A. Scheglov

Sideband instability was observed very clearly in the long-pulse regime of the Novosibirsk terahertz free electron laser (FEL) by a Bruker vacuum Fourier spectrometer IFS-66v. For positive frequency detuning, simultaneous generation of six sideband modes was observed. Mode competition and mode switching have been registered. Negative frequency detuning decreased the number of sideband modes and an single-mode generation with the narrowest classical spectrum has been obtained for sufficiently large detuning .


international conference on infrared, millimeter, and terahertz waves | 2005

Highly sensitive fast Schottky-diode detectors in experiments on Novosibirsk free electron laser

E.I. Kolobanov; V.V. Kotenkov; V. V. Kubarev; G.N. Kulipanov; E.V. Makashov; A.N. Matveenko; L.E. Medvedev; A.D. Oreshkov; V.K. Ovchar; Konstantin S. Palagin; V.M. Popik; T.V. Salikova; S.S. Serednyakov; O.A. Shevchenko; M.A. Scheglov; N.A. Vinokurov

Fast Schottky-diode detectors is used for measurement and optimization of main parameters of Novosibirsk free electron laser (FEL) such as losses in optical resonator, small signal gain, optimal output coupling. Possibility of applying of the device for measurement of coherence time and FEL pulse duration is considered. We plan also to calibrate free electron laser wavelengths by this detector and etalon universal gas laser. High sensitivity of the detector allows apply of it in various users experiments too.


Journal of Synchrotron Radiation | 2003

Commissioning of the accelerator-recuperator for the FEL at the Siberian Center for Photochemical Research.

E. I. Antokhin; R. R. Akberdin; M. A. Bokov; V. P. Bolotin; O. I. Deichuli; E. N. Dementyev; A.N Dubrovin; B. A. Dovgenko; Yu. A. Evtushenko; N.G. Gavrilov; E. I. Gorniker; D. A. Kairan; M.A. Kholopov; O. B. Kiselev; E.I. Kolobanov; A. A. Kondakov; N. L. Kondakova; S. A. Krutikhin; V. V. Kubarev; G.N. Kulipanov; E. A. Kuper; I. V. Kuptsov; G.Ya. Kurkin; L. G. Leontyevskaya; V. Yu. Loskutov; L.E. Medvedev; A. S. Medvedko; S.V. Miginsky; L. A. Mironenko; A.D. Oreshkov

A 100 MeV eight-turn accelerator-recuperator intended to drive a high-power infrared free-electron laser (FEL) is currently under construction in Novosibirsk. The first stage of the machine includes a one-turn accelerator-recuperator that contains a full-scale RF system. It was commissioned successfully in June 2002.


international conference on infrared, millimeter, and terahertz waves | 2009

Modulation instability at the Novosibirsk terahertz free electron laser: Study and suppression

V. V. Kubarev; E.I. Kolobanov; G.N. Kulipanov; A.N. Matveenko; L.E. Medvedev; T.V. Salikova; M.A. Scheglov; S.S. Serednyakov; N.A. Vinokurov

Different mode regimes versus the extent modulation instability stabilization were investigated with a complex diagnostics system. Slippage due to frequency detuning of electron and light pulses turned out to be the main stabilization factor. Spectral and time parameters of the laser, especially the radiation of high harmonics, have been shown to strongly depend on the stabilization.

Collaboration


Dive into the M.A. Scheglov's collaboration.

Top Co-Authors

Avatar

G.N. Kulipanov

Budker Institute of Nuclear Physics

View shared research outputs
Top Co-Authors

Avatar

N.A. Vinokurov

Budker Institute of Nuclear Physics

View shared research outputs
Top Co-Authors

Avatar

V.M. Popik

Budker Institute of Nuclear Physics

View shared research outputs
Top Co-Authors

Avatar

E.I. Kolobanov

Budker Institute of Nuclear Physics

View shared research outputs
Top Co-Authors

Avatar

L.E. Medvedev

Budker Institute of Nuclear Physics

View shared research outputs
Top Co-Authors

Avatar

S.S. Serednyakov

Novosibirsk State University

View shared research outputs
Top Co-Authors

Avatar

T.V. Salikova

Budker Institute of Nuclear Physics

View shared research outputs
Top Co-Authors

Avatar

V.K. Ovchar

Budker Institute of Nuclear Physics

View shared research outputs
Top Co-Authors

Avatar

O.A. Shevchenko

Budker Institute of Nuclear Physics

View shared research outputs
Top Co-Authors

Avatar

V. V. Kubarev

Budker Institute of Nuclear Physics

View shared research outputs
Researchain Logo
Decentralizing Knowledge