Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. A. Thompson is active.

Publication


Featured researches published by M. A. Thompson.


Publications of the Astronomical Society of the Pacific | 2010

The Herschel ATLAS

Stephen Anthony Eales; Loretta Dunne; D. L. Clements; A. Cooray; G. De Zotti; Simon Dye; R. J. Ivison; M. J. Jarvis; Guilaine Lagache; Steve Maddox; M. Negrello; S. Serjeant; M. A. Thompson; E. van Kampen; A. Amblard; Paola Andreani; M. Baes; A. Beelen; G. J. Bendo; Dominic J. Benford; Frank Bertoldi; James J. Bock; D. G. Bonfield; A. Boselli; C. Bridge; V. Buat; D. Burgarella; R. Carlberg; A. Cava; P. Chanial

The Herschel ATLAS is the largest open-time key project that will be carried out on the Herschel Space Observatory. It will survey 570 deg2 of the extragalactic sky, 4 times larger than all the other Herschel extragalactic surveys combined, in five far-infrared and submillimeter bands. We describe the survey, the complementary multiwavelength data sets that will be combined with the Herschel data, and the six major science programs we are undertaking. Using new models based on a previous submillimeter survey of galaxies, we present predictions of the properties of the ATLAS sources in other wave bands.


New Astronomy | 2010

VISTA Variables in the Via Lactea (VVV): The public ESO near-IR variability survey of the Milky Way

D. Minniti; P. W. Lucas; J. P. Emerson; Roberto K. Saito; M. Hempel; P. Pietrukowicz; Av Ahumada; M. V. Alonso; J. Alonso-Garcia; Ji Arias; Reba M. Bandyopadhyay; R.H. Barbá; B. Barbuy; L. R. Bedin; Eduardo Luiz Damiani Bica; J. Borissova; L. Bronfman; Giovanni Carraro; Marcio Catelan; Juan J. Claria; N. J. G. Cross; R. de Grijs; I. Dékány; Janet E. Drew; C. Fariña; C. Feinstein; E. Fernández Lajús; R.C. Gamen; D. Geisler; W. Gieren

Original article can be found at: http://www.sciencedirect.com/science/journal/13841076 Copyright Elsevier B.V.


Science | 2010

The detection of a population of submillimeter-bright, strongly lensed galaxies

M. Negrello; R. Hopwood; G. De Zotti; A. Cooray; A. Verma; J. J. Bock; David T. Frayer; M. A. Gurwell; A. Omont; R. Neri; H. Dannerbauer; L. Leeuw; Elizabeth J. Barton; Jeff Cooke; S. Kim; E. da Cunha; G. Rodighiero; P. Cox; D. G. Bonfield; M. J. Jarvis; S. Serjeant; R. J. Ivison; Simon Dye; I. Aretxaga; David H. Hughes; E. Ibar; Frank Bertoldi; I. Valtchanov; Stephen Anthony Eales; Loretta Dunne

Through a Lens Brightly Astronomical sources detected in the submillimeter range are generally thought to be distant, dusty galaxies undergoing a vigorous burst of star formation. They can be detected because the dust absorbs the light from stars and reemits it at longer wavelengths. Their properties are still difficult to ascertain, however, because the combination of interference from dust and the low spatial resolution of submillimeter telescopes prevents further study at other wavelengths. Using data from the Herschel Space Telescope, Negrello et al. (p. 800) showed that by searching for the brightest sources in a wide enough area in the sky it was possible to detect gravitationally lensed submillimeter galaxies with nearly full efficiency. Gravitational lensing occurs when the light of an astronomical object is deflected by a foreground mass. This phenomenon increases the apparent brightness and angular size of the lensed objects, making it easier to study sources that would be otherwise too faint to probe. Data from the Herschel Space Observatory unveils distant, dusty galaxies invisible to optical telescopes. Gravitational lensing is a powerful astrophysical and cosmological probe and is particularly valuable at submillimeter wavelengths for the study of the statistical and individual properties of dusty star-forming galaxies. However, the identification of gravitational lenses is often time-intensive, involving the sifting of large volumes of imaging or spectroscopic data to find few candidates. We used early data from the Herschel Astrophysical Terahertz Large Area Survey to demonstrate that wide-area submillimeter surveys can simply and easily detect strong gravitational lensing events, with close to 100% efficiency.


The Astrophysical Journal | 2011

A 100 pc ELLIPTICAL AND TWISTED RING OF COLD AND DENSE MOLECULAR CLOUDS REVEALED BY HERSCHEL AROUND THE GALACTIC CENTER

S. Molinari; John Bally; Alberto Noriega-Crespo; M. Compiegne; J.-P. Bernard; D. Paradis; P. Martin; L. Testi; M. J. Barlow; T. J. T. Moore; R. Plume; B. M. Swinyard; A. Zavagno; L. Calzoletti; A. M. di Giorgio; D. Elia; F. Faustini; P. Natoli; M. Pestalozzi; S. Pezzuto; F. Piacentini; G. Polenta; D. Polychroni; E. Schisano; A. Traficante; M. Veneziani; Cara Battersby; Michael G. Burton; Sean J. Carey; Yasuo Fukui

Thermal images of cold dust in the Central Molecular Zone of the Milky Way, obtained with the far-infrared cameras on board the Herschel satellite, reveal a similar to 3 x 10(7) M-circle dot ring of dense and cold clouds orbiting the Galactic center. Using a simple toy model, an elliptical shape having semi-major axes of 100 and 60 pc is deduced. The major axis of this 100 pc ring is inclined by about 40 degrees with respect to the plane of the sky and is oriented perpendicular to the major axes of the Galactic Bar. The 100 pc ring appears to trace the system of stable x(2) orbits predicted for the barred Galactic potential. Sgr A* is displaced with respect to the geometrical center of symmetry of the ring. The ring is twisted and its morphology suggests a flattening ratio of 2 for the Galactic potential, which is in good agreement with the bulge flattening ratio derived from the 2MASS data.


Monthly Notices of the Royal Astronomical Society | 2011

Herschel ⋆ -ATLAS: Rapid evolution of dust in galaxies over the last 5 billion years

Loretta Dunne; Haley Louise Gomez; E. da Cunha; S. Charlot; Simon Dye; Stephen Anthony Eales; Steve Maddox; K. Rowlands; D. J. B. Smith; Robbie Richard Auld; M. Baes; D. G. Bonfield; N. Bourne; S. Buttiglione; A. Cava; D. L. Clements; K. Coppin; A. Cooray; Aliakbar Dariush; G. De Zotti; Simon P. Driver; J. Fritz; J. E. Geach; R. Hopwood; E. Ibar; R. J. Ivison; M. J. Jarvis; Lee S. Kelvin; Enzo Pascale; Michael Pohlen

We present the first direct and unbiased measurement of the evolution of the dust mass function of galaxies over the past 5 billion years of cosmic history using data from the Science Demonstration Phase of the Herschel-Astrophysical Terahertz Large Area Survey (Herschel-ATLAS). The sample consists of galaxies selected at 250 m which have reliable counterparts from the Sloan Digital Sky Survey (SDSS) at z < 0.5, and contains 1867 sources. Dust masses are calculated using both a single-temperature grey-body model for the spectral energy distribution and also a model with multiple temperature components. The dust temperature for either model shows no trend with redshift. Splitting the sample into bins of redshift reveals a strong evolution in the dust properties of the most massive galaxies. At z= 0.4–0.5, massive galaxies had dust masses about five times larger than in the local Universe. At the same time, the dust-to-stellar mass ratio was about three to four times larger, and the optical depth derived from fitting the UV-sub-mm data with an energy balance model was also higher. This increase in the dust content of massive galaxies at high redshift is difficult to explain using standard dust evolution models and requires a rapid gas consumption time-scale together with either a more top-heavy initial mass function (IMF), efficient mantle growth, less dust destruction or combinations of all three. This evolution in dust mass is likely to be associated with a change in overall interstellar medium mass, and points to an enhanced supply of fuel for star formation at earlier cosmic epochs.


Monthly Notices of the Royal Astronomical Society | 2011

The Australia Telescope Compact Array Broad-band Backend: description and first results

Warwick E. Wilson; Richard H. Ferris; P. Axtens; A. Brown; E. Davis; G. Hampson; M. Leach; P. Roberts; S. Saunders; B. Koribalski; J. L. Caswell; E. Lenc; J. Stevens; M. A. Voronkov; Mark Hendrik Wieringa; Kate J. Brooks; Philip G. Edwards; R. D. Ekers; B. Emonts; L. Hindson; S. Johnston; Sarah T. Maddison; E. K. Mahony; S. S. Malu; M. Massardi; Minnie Y. Mao; D. McConnell; R. P. Norris; D. Schnitzeler; R. Subrahmanyan

Here we describe the Compact Array Broadband Backend (CABB) and present first results obtained with the upgraded Australia Telescope Compact Array (ATCA). The 16-fold increase in observing bandwidth, from 2×128 MHz to 2×2048 MHz, high bit sampling, and addition of 16 zoom windows (each divided into a further 2048 channels) provide major improvements for all ATCA observations. The benefits of the new system are: (1) hugely increased radio continuum and polarization sensitivity as well as image fidelity, (2) substantially improved capability to search for and map emission and absorption lines over large velocity ranges, (3) simultaneous multi-line and continuum observations, (4) increased sensitivity, survey speed and dynamic range due to high-bit sampling, and (5) high velocity resolution, while maintaining full polarization output. The new CABB system encourages all observers to make use of both spectral line and continuum data to achieve their full potential. Given the dramatic increase of the ATCA capabilities in all bands (ranging from 1.1 to 105 GHz) CABB enables scientific projects that were not feasible before the upgrade, such as simultaneous observations of multiple spectral lines, on-the-fly mapping, fast follow-up of radio transients (e.g., the radio afterglow of new supernovae) and maser observations at high velocity resolution and full polarization. The first science results presented here include wide-band spectra, high dynamic-range images, and polarization measurements, highlighting the increased capability and discovery potential of the ATCA.


Publications of the Astronomical Society of Australia | 2011

EMU: Evolutionary Map of the Universe

R. P. Norris; Andrew M. Hopkins; J. Afonso; Steven Brown; James J. Condon; Loretta Dunne; Ilana J. Feain; R. Hollow; M. J. Jarvis; M. Johnston-Hollitt; E. Lenc; Enno Middelberg; P. Padovani; I. Prandoni; Lawrence Rudnick; N. Seymour; Grazia Umana; H. Andernach; D. M. Alexander; P. N. Appleton; David Bacon; Julie Banfield; W. Becker; Michael J. I. Brown; P. Ciliegi; C. A. Jackson; Stephen Anthony Eales; A. C. Edge; B. M. Gaensler; G. Giovannini

EMU is a wide-field radio continuum survey planned for the new Australian Square Kilometre Array Pathfinder (ASKAP) telescope. The primary goal of EMU is to make a deep (rms ~10 μJy/beam) radio continuum survey of the entire Southern sky at 1.3 GHz, extending as far North as +30° declination, with a resolution of 10 arcsec. EMU is expected to detect and catalogue about 70 million galaxies, including typical star-forming galaxies up to z ~ 1, powerful starbursts to even greater redshifts, and active galactic nuclei to the edge of the visible Universe. It will undoubtedly discover new classes of object. This paper defines the science goals and parameters of the survey, and describes the development of techniques necessary to maximise the science return from EMU.


Monthly Notices of the Royal Astronomical Society | 2010

The 6-GHz methanol multibeam maser catalogue - I. Galactic Centre region, longitudes 345° to 6°

J. L. Caswell; G. A. Fuller; J. A. Green; A. Avison; S. L. Breen; Kate J. Brooks; Michael G. Burton; A. Chrysostomou; James Cox; Philip J. Diamond; S. P. Ellingsen; M. D. Gray; M. G. Hoare; M. R. W. Masheder; N. M. McClure-Griffiths; M. Pestalozzi; C. Phillips; Lyshia Quinn; M. A. Thompson; M. A. Voronkov; A. J. Walsh; Derek Ward-Thompson; D. Wong-McSweeney; J. A. Yates; R. J. Cohen

Original article can be found at: http://www3.interscience.wiley.com/journal/ Copyright Royal Astronomical Society


Monthly Notices of the Royal Astronomical Society | 2005

Millimetre continuum observations of southern massive star formation regions. I. SIMBA observations of cold cores

T. Hill; Michael G. Burton; V. Minier; M. A. Thompson; A. J. Walsh; M. R. Hunt-Cunningham; Guido Garay

We report the results of a 1.2-mm continuum emission survey toward 131 star-forming complexes suspected of undergoing massive star formation. These regions have previously been identified as harbouring a methanol maser and/or a radio continuum source [ultracompact (UC) H II region], the presence of which is in most instances indicative of massive star formation. The 1.2-mm emission was mapped using the SIMBA instrument on the 15-m Swedish ESO Submillimetre Telescope (SEST). Emission is detected toward all of the methanol maser and UC H II regions targeted, as well as towards 20 others lying within the fields mapped, implying that these objects are associated with cold, deeply embedded objects. Interestingly, there are also 20 methanol maser sites and nine UC H II regions within the fields mapped which are devoid of millimetre continuum emission. In addition to the maser and UC H II regions detected, we have also identified 253 other sources within the SIMBA maps. All of these (253) are new sources, detected solely from their millimetre continuum emission. These ‘mm-only’ cores are devoid of the traditional indicators of massive star formation, (i.e. methanol/OH maser, UC H II regions or IRAS point sources). At least 45 per cent of these mm-only cores are also without mid-infrared Mid-course Space Experiment (MSX) emission. The ‘mm-only’ core may be an entirely new class of source that represents an earlier stage in the evolution of massive stars, prior to the onset of methanol maser emission. Or, they may harbour protoclusters which do not contain any high-mass stars (i.e. below the H II region limit). In total, 404 sources are detected, representing four classes of sources which are distinguished by the presence of the different combination of associated tracer/s. Their masses, estimated assuming a dust temperature of 20 K and adopting kinematic distances, range from 0.5 × 10 1 to 3.7 × 10 4 M� , with an average mass for the sample of 1.5 × 10 3 M� . The H2 number density (nH2 )o fthe source sample ranges from 1.4 × 10 3 to 1.9 × 10 6 cm −3 , with an average of 8.7 × 10 4 cm −3 . The average radius of the sample is 0.5 pc. The visual extinction ranges from 10 to 500 mag with an average of 80 mag, which implies a high degree of embedding. The surface density (� )v aries from 0.2 to 18.0 kg m −2 with an average of 2.8 kg m −2 . Analysis of the millimetre-only sources shows that they are less massive ( ¯


Monthly Notices of the Royal Astronomical Society | 2009

The 6-GHz multibeam maser survey – I. Techniques

J. A. Green; J. L. Caswell; G. A. Fuller; A. Avison; S. L. Breen; Kate J. Brooks; Michael G. Burton; A. Chrysostomou; James Cox; Philip J. Diamond; S. P. Ellingsen; M. D. Gray; M. G. Hoare; M. R. W. Masheder; N. M. McClure-Griffiths; M. Pestalozzi; C. Phillips; Lyshia Quinn; M. A. Thompson; M. A. Voronkov; A. J. Walsh; Derek Ward-Thompson; D. Wong-McSweeney; J. A. Yates; R. J. Cohen

A new 7-beam 6 7 GHz receiver has been built to survey the Galaxy and the Magellanic Clouds for newly forming high-mass stars that are pinpointed by strong methanol maser emission at 6668 MHz. The receiver was jointly constructed by Jodrell Bank Observatory (JBO) and the Australia Telescope National Facility (ATNF) and allows simultaneous coverage at 6668 and 6035 MHz. It was successfully commissioned at Parkes in January 2006 and is now being used to conduct the Parkes-Jodrell multibeam maser survey of the Milky Way. This will be the first systematic survey of the entire Galactic plane for masers of not only 6668-MHz methanol, but also 6035-MHz excited-state hydroxyl. The survey is two orders of magnitude faster than most previous systematic surveys and has an rms noise level of �0.17Jy. This paper describes the observational strategy, techniques and reduction procedures of the Galactic and Magellanic Cloud surveys, together with deeper, pointed, follow-up observations and complementary observations with other instruments. It also includes an estimate of the survey detection efficiency. The 111 days of observationswith the Parkes telescope have so far yielded >800 methanol sources, of which �350 are new discoveries. The whole project will provide the first comprehensive Galaxy-wide catalogue of 6668-MHz and 6035-MHz masers.

Collaboration


Dive into the M. A. Thompson's collaboration.

Top Co-Authors

Avatar

G. A. Fuller

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

M. Pestalozzi

University of Hertfordshire

View shared research outputs
Top Co-Authors

Avatar

A. Cooray

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

T. J. T. Moore

Liverpool John Moores University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. De Zotti

International School for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar

Michael G. Burton

University of New South Wales

View shared research outputs
Researchain Logo
Decentralizing Knowledge