M.A. Wattiaux
University of Wisconsin-Madison
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M.A. Wattiaux.
Journal of Dairy Science | 2011
M.J. Aguerre; M.A. Wattiaux; J. M. Powell; G.A. Broderick; C. Arndt
Holstein cows housed in a modified tie-stall barn were used to determine the effect of feeding diets with different forage-to-concentrate ratios (F:C) on performance and emission of CH(4), CO(2) and manure NH(3)-N. Eight multiparous cows (means ± standard deviation): 620 ± 68 kg of body weight; 52 ± 34 d in milk and 8 primiparous cows (546 ± 38 kg of body weight; 93 ± 39 d in milk) were randomly assigned to 1 of 4 air-flow controlled chambers, constructed to fit 4 cows each. Chambers were assigned to dietary treatment sequences in a single 4 × 4 Latin square design. Dietary treatments, fed as 16.2% crude protein total mixed rations included the following F:C ratio: 47:53, 54:46, 61:39, and 68:32 [diet dry matter (DM) basis]. Forage consisted of alfalfa silage and corn silage in a 1:1 ratio. Cow performance and emission data were measured on the last 7 d and the last 4 d, respectively of each 21-d period. Air samples entering and exiting each chamber were analyzed with a photo-acoustic field gas monitor. In a companion study, fermentation pattern was studied in 8 rumen-cannulated cows. Increasing F:C ratio in the diet had no effect on DM intake (21.1 ± 1.5 kg/d), energy-corrected milk (ECM, 37.4 ± 2.2 kg/d), ECM/DM intake (1.81 ± 0.18), yield of milk fat, and manure excretion and composition; however, it increased milk fat content linearly by 7% and decreased linearly true protein, lactose, and solids-not-fat content (by 4, 1, and 2%, respectively) and yield (by 10, 6, and 6%, respectively), and milk N-to-N intake ratio. On average 93% of the N consumed by the cows in the chambers was accounted for as milk N, manure N, or emitted NH(3)-N. Increasing the F:C ratio also increased ruminal pH linearly and affected concentrations of butyrate and isovalerate quadratically. Increasing the F:C ratio from 47:53 to 68:32 increased CH(4) emission from 538 to 648 g/cow per day, but had no effect on manure NH(3)-N emission (14.1 ± 3.9 g/cow per day) and CO(2) emission (18,325 ± 2,241 g/cow per day). In this trial, CH(4) emission remained constant per unit of neutral detergent fiber intake (1g of CH(4) was emitted for every 10.3g of neutral detergent fiber consumed by the cow), but increased from 14.4 to 18.0 g/kg of ECM when the percentage of forage in the diet increased from 47 to 68%. Although the pattern of emission within a day was distinct for each gas, emissions were higher between morning feeding (0930 h) and afternoon milking (1600 h) than later in the day. Altering the level of forage within a practical range and rebalancing dietary crude protein with common feeds of the Midwest of the United States had no effects on manure NH(3)-N emission but altered CH(4) emission.
Journal of Dairy Science | 2011
J. M. Powell; M.A. Wattiaux; G.A. Broderick
The purpose of this study was to compile and evaluate relationships between feed nitrogen (N) intake, milk urea N (MUN), urinary urea N (UUN), and ammonia (NH(3)) emissions from dairy farms to aid policy development. Regression relationships between MUN, UUN, and NH(3) emissions were compiled from studies conducted in Wisconsin, California, and the Netherlands. Relative reductions in NH(3) emissions were calculated as percentage decreases in NH(3) emissions associated with a baseline MUN level of 14 mg/dL (prevailing industry average). For 3 studies with cows in stanchion barns, relative NH(3) emission reductions of 10.3 to 28.2% were obtained when MUN declined from 14 to 10mg/dL. Similarly, analyses of 2 freestall studies provided relative NH(3) emission reductions of 10.5 to 33.7% when MUN levels declined from 14 to 10mg/dL. The relative reductions in NH(3) emissions from both stanchion and freestall barns can be associated directly with reductions in UUN excretion, which can be determined using MUN. The results of this study may help create new awareness, and perhaps eventual industry-based incentives, for management practices that enhance feed N use efficiency and reduce MUN, UUN, and NH(3) emissions from dairy farms.
Animal | 2010
M.J. Aguerre; M.A. Wattiaux; T. Hunt; B. R. Larget
The main objective of this experiment was to monitor the impact of barn side and dietary crude protein (CP) on production performance, manure production and composition, and ammonia nitrogen (N) emission from a lactating dairy herd housed in a free-stall barn and managed under farm-like conditions throughout a number of months in each season of the year. The 78-cow lactating herd of the University of Wisconsin-Platteville (USA) was halved and each group was allocated to either the north or south side of the barn and either a recommended (REC) diet with 16.7 ± 1.3% CP dry matter basis (DM) or an excess (EXC) CP diet containing 1.5 units of CP above the REC diet (18.2 ± 1.5%). In 7 months between February 2004 and January 2005, total manure collection was conducted by manual scraping of the alleys and ammonia-N emission was calculated as intake N + bedding N - milk N - scraped manure N. Side of the barn (northern v. southern exposure) did not influence measurements and there was no effect of dietary CP on dry matter intake (DMI), milk, milk fat, and milk protein production, but a lower manure N concentration was observed for the group of cows fed the REC diet compared with the EXC diet (3.43% v. 3.66% of DM). Nitrogen intake was 63 g/day lower (643 v. 706 g/day), milk N was unaffected (157 g/day), manure N was 32 g/day lower (391 v. 423 g/day), and ammonia-N emission was 34 g/day lower (93 v. 127 g/day) for the group consuming the REC diet compared with the group consuming the EXC diet. There were larger variations in measured responses among months of the year than between level of dietary CP. Wet and dry manure excretions tended to be higher, but manure pH was reduced when corn silage became unavailable and the diet included additional corn grain and alfalfa silage as the only forage source. Prediction of manure N excretion for a group of cow determined as N intake - N milk was 9% higher than current prediction equations of the American Society of Agricultural Engineers. Ammonia-N loss averaged 110 g/day per lactating cow, but ranged from 64 g/day to 178 g/day with no clear seasonal pattern. There was no clear association between barn temperature, manure temperature or manure pH and ammonia-N emission; however, intake N explained 61% of the variation in ammonia-N emission.
Journal of Dairy Science | 2012
M.J. Aguerre; M.A. Wattiaux; J. M. Powell
Sixteen 200-L barrels were used to determine the effects of dietary forage-to-concentrate (F:C) ratio on the rate of NH(3)-N, N(2)O, CH(4), and CO(2) emissions from dairy manure during a 77-d storage period. Manure was obtained from a companion study where cows were assigned to total mixed rations that included the following F:C ratio: 47:53, 54:46, 61:39, and 68:32 (diet dry matter basis) and housed in air-flow-controlled chambers constructed in a modified tiestall barn. On d 0 of this study, deposited manure and bedding from each emission chamber was thoroughly mixed, diluted with water (1.9 to 1 manure-to-water ratio) and loaded in barrels. In addition, on d 0, 7, 14, 28, 35, 49, 56, 63, 70, and 77 of storage, the rate of NH(3)-N, N(2)O, CH(4), and CO(2) emissions from each barrel were measured with a dynamic chamber and gas concentration measured with a photo-acoustic multi-gas monitor. Data were analyzed as a randomized complete block with 4 replications. Dietary F:C ratio had no effect on manure dry matter, total N and total ammoniacal-N (NH(3)-N + NH(4)(+)-N), or pH at the time of storage (mean ± SD: 10.6±0.6%, 3.0±0.2%, 93.1±18.1 mg/dL, and 7.8±0.5, respectively). No treatment differences were observed in the overall rate of manure NH(3)-N, N(2)O, CH(4), and CO(2) emissions (mean ± SD over the 77-d storage period; 117±25, 30±7, 299±62, and 15,396±753 mg/hr per m(2), respectively). The presence of straw bedding in manure promoted the formation of a surface crust that became air dried after about 1 mo of storage, and was associated with an altered pattern in NH(3)-N and N(2)O emissions in particular. Whereas NH(3)-N emission rate was highest on d 0 and gradually decreased until reaching negligible levels on d 35, N(2)O emission rate was almost zero the first 2 wk of storage, increased sharply to peak on d 35, and decreased subsequently. The emission rate of CH(4) and CO(2) peaked simultaneously on d 7, but decreased subsequently until the end of the storage period. In this study, C:N ratio of gaseous losses was 32:1, reflecting higher volatile C loss than volatile N loss during storage. On a CO(2)-equivalent basis, the most important source of non-CO(2) greenhouse gas emitted was CH(4) until formation of an air-dried crust, but N(2)O thereafter. Taken together, these results suggested that the formation of an air-dried crust resulting from the straw bedding present in the manure reduced drastically NH(3)-N, and CH(4) emissions, but was conducive of N(2)O production and emission.
Journal of Dairy Science | 2015
C. Arndt; J. M. Powell; M.J. Aguerre; P.M. Crump; M.A. Wattiaux
The objective was to study repeatability and sources of variation in feed conversion efficiency [FCE, milk kg/kg dry matter intake (DMI)] of lactating cows in mid to late lactation. Trials 1 and 2 used 16 cows (106 to 368 d in milk) grouped in 8 pairs of 1 high- and 1 low-FCE cow less than 16 d in milk apart. Trial 1 determined the repeatability of FCE during a 12-wk period. Trial 2 quantified the digestive and metabolic partitioning of energy and N with a 3-d total fecal and urine collection and measurement of CH4 and CO2 emission. Trial 3 studied selected ruminal methanogens in 2 pairs of cows fitted with rumen cannulas. Cows received a single diet including 28% corn silage, 27% alfalfa silage, 17% crude protein, and 28% neutral detergent fiber (dry matter basis). In trial 1, mean FCE remained repeatedly different and averaged 1.83 and 1.03 for high- and low-FCE cows, respectively. In trial 2, high-FCE cows consumed 21% more DMI, produced 98% more fat- and protein-corrected milk, excreted 42% less manure per kilogram of fat- and protein-corrected milk, but emitted the same daily amount of CH4 and CO2 compared with low-FCE cows. Percentage of gross energy intake lost in feces was higher (28.6 vs. 25.9%), but urinary (2.76 vs. 3.40%) and CH4 (5.23 vs. 6.99%) losses were lower in high- than low-FCE cows. Furthermore, high-FCE cows partitioned 15% more of gross energy intake toward net energy for maintenance, body gain, and lactation (37.5 vs. 32.6%) than low-FCE cows. Lower metabolic efficiency and greater heat loss in low-FCE cows might have been associated in part with greater energy demand for immune function related to subclinical mastitis, as somatic cell count was 3.8 fold greater in low- than high-FCE cows. As a percentage of N intake, high-FCE cows tended to have greater fecal N (32.4 vs. 30.3%) and had lower urinary N (32.2 vs. 41.7%) and greater milk N (30.3 vs. 19.1%) than low-FCE cows. In trial 3, Methanobrevibacter spp. strain AbM4 was less prevalent in ruminal content of high-FCE cows, which emitted less CH4 per unit of DMI and per unit of neutral detergent fiber digested than low-FCE cows. Thus lower digestive efficiency was more than compensated by greater metabolic efficiencies in high- compared with low-FCE cows. There was not a single factor, but rather a series of mechanisms involved in the observed differences in efficiency of energy utilization of the lactating cows in this study.
Journal of Dairy Science | 2015
C. Arndt; J. M. Powell; M.J. Aguerre; M.A. Wattiaux
Two trials were conducted simultaneously to study the effects of varying alfalfa silage (AS) to corn silage (CS) ratio in diets formulated to avoid excess protein or starch on lactating dairy cow performance, digestibility, ruminal parameters, N balance, manure production and composition, and gaseous emissions [carbon dioxide (CO2), methane (CH4), and ammonia-N (NH3-N)]. In trial 1 all measurements, except gas emissions, were conducted on 8 rumen-cannulated cows in replicated 4×4 Latin squares. In trial 2, performance and emissions were measured on 16 cows randomly assigned to 1 of 4 air-flow controlled chambers in a 4×4 Latin square. Dietary treatments were fed as total mixed rations with forage-to-concentrate ratio of 55:45 [dietary dry matter (DM) basis] and AS:CS ratios of 20:80, 40:60, 60:40, and 80:20 (forage DM basis). Measurements were conducted the last 3d of each 21-d period. Treatments did not affect DM intake, DM digestibility, and milk/DM intake. However, responses were quadratic for fat-and-protein-corrected milk, fat, and protein production, which reached predicted maxima for AS:CS ratio of 50:50, 49:51, and 34:66, respectively. Nitrogen use efficiency (milk N/N intake) decreased from 31 to 24g/100g as AS:CS ratio increased from 20:80 to 80:20. Treatments did not alter NH3-N/milk-N but tended to have a quadratic effect on daily NH3-N emission. Treatments had a quadratic effect on daily CH4 emission, which was high compared with current literature; they influenced CH4 emission per unit of neutral detergent fiber (NDF) intake and tended to influence CO2/NDF intake. Ruminal acetate-to-propionate ratio and total-tract NDF digestibility increased linearly with increasing AS:CS ratio. In addition, as AS:CS ratio increased from 20:80 to 80:20, NDF digested increased linearly from 2.16 to 3.24kg/d, but CH4/digested NDF decreased linearly from 270 to 190g/kg. These 2 counterbalancing effects likely contributed to the observed quadratic response in daily CH4 emission, which may have been influenced also by increasing starch with increasing CS in the diet as reflected by the increased ruminal propionate molar proportion. Overall, production performances were greatest for the intermediate AS:CS ratios (40:60 and 60:40), but daily excretion of urine, manure, fecal N, urinary urea N, and urinary N decreased with increasing proportion of CS in the diet, whereas daily CH4 emission was reduced for the 2 extreme AS:CS ratios (20:80 and 80:20). However, the proportion of AS and CS in the diet did not affect CH4/fat-and-protein corrected milk.
Agroecology and Sustainable Food Systems | 2013
Liliana Fadul-Pacheco; M.A. Wattiaux; Angélica Espinoza-Ortega; Ernesto Sánchez-Vera; Carlos Manuel Arriaga-Jordán
A sustainability evaluation was undertaken with 22 smallholder dairy farms in the highlands of Mexico; following the IDEA method in the agroecological, socioterritorial, and economic scales (all scales are out of 100). Sustainability was highest for the agroecological scale (59/100), intermediate for the socioterritorial scale (53/100), and lowest on the economic scale (43/100). The sustainability of a farm is the lowest score of the three scales. In most farms, the lowest was the economic scale. A cluster analysis led to the identification of five distinct groups: Cluster 1 defined two farms not related to others, cluster 2 farms (4) were those with high agroecological scores, cluster 3 farms (8) were most representative of the area, cluster 4 included two farms with low socioterritorial and economic sustainability scores, and cluster 5 was made up of the remaining six farms with the highest economic sustainability score, but limited by the agroecological and socioterritorial scales. In all farms, there is a high reliance on bought-in inputs. Therefore, given the limited resources of these systems, the better option is to limit the number of cows to those that can be fed mostly with the production of the farm, which increases the economic sustainability. The IDEA method is a useful tool for sustainability assessment of small-scale dairy systems.
Journal of Environmental Quality | 2011
J. M. Powell; M.J. Aguerre; M.A. Wattiaux
Excess crude protein (CP) in dairy cow diets is excreted mostly as urea nitrogen (N), which increases ammonia (NH) emissions from dairy farms and heightens human health and environmental concerns. Feeding less CP and more tannin to dairy cows may enhance feed N use and milk production, abate NH emissions, and conserve the fertilizer N value of manure. Lab-scale ventilated chambers were used to evaluate the impacts of CP and tannin feeding on slurry chemistry, NH emissions, and soil inorganic N levels after slurry application to a sandy loam soil and a silt loam soil. Slurry from lactating Holstein dairy cows (Bos taurus) fed two levels of dietary CP (low CP [LCP], 155 g kg; high CP [HCP], 168 g kg) each fed at four levels of dietary tannin extract, a mixture from red quebracho (Schinopsis lorentzii) and chestnut (Castanea sativa) trees (0 tannin [0T]; low tannin [LT], 4.5 g kg; medium tannin [MT], 9.0 g kg; and high tannin [HT], 18.0 g kg) were applied to soil-containing lab-scale chambers, and NH emissions were measured 1, 3, 6, 12, 24, 36, and 48 h after slurry application. Emissions from the HCP slurry were 1.53 to 2.57 times greater ( < 0.05) than from the LCP slurry. At trials end (48 h), concentrations of inorganic N in soils were greater ( < 0.05) in HCP slurry-amended soils than in LCP slurry-amended soils. Emissions from HT slurry were 28 to 49% lower ( < 0.05) than emissions from 0T slurry, yet these differences did not affect soil inorganic N levels. Emissions from the sandy loam soil were 1.07 to 1.15 times greater ( < 0.05) than from silt loam soil, a result that decreased soil inorganic N in the sandy loam compared with the silt loam soil. Larger-scale and longer-term field trails are needed to ascertain the effectiveness of feeding tannin extracts to dairy cows in abating NH loss from land-applied slurry and the impact of tannin-containing slurry on soil N cycles.
Journal of Environmental Quality | 2011
J. M. Powell; M.J. Aguerre; M.A. Wattiaux
Feeding more tannin and less crude protein (CP) to dairy cows may have synergistic impacts on reducing NH emissions from dairy barns. Three trials using lab-scale ventilated chambers with concrete floors were conducted to determine the impacts on NH emission of tannin and CP feeding, tannin feeding on urease activity in feces, and tannin application directly to the barn floor. For Trial 1, mixtures of feces and urine from lactating Holstein dairy cows () fed four levels (g kg) of dietary tannin extract [a mixture from red quebracho () and chestnut () trees]: 0 tannin (0T), 4.5 (low tannin [LT]), 9.0 (medium tannin [MT]), and 18.0 (high tannin [HT]); each fed at two levels (g kg) of dietary CP: 155 low CP (LCP) and 168 high CP (HCP) were applied to chambers. For Trial 2, urea solution was added to feces obtained from cows fed 0T, MT, and HT at HCP. For Trial 3, tannin amounts equivalent to those fed at 0T, MT, and HT were applied directly to feces-urine mixtures from 0T-HCP. For all trials, NH emissions were measured 1, 3, 6, 12, 24, 36, and 48 h after treatment application. For Trial 1, reductions in NH emission due to tannin feeding were greatest when fed at LCP: The LCP-LT and LCP-HT treatments emitted 30.6% less NH than LCP-0T, and the HCP-LT and HCP-HT treatments emitted 16.3% less NH than HCP-0T. For Trial 2, feeding tannin decreased urease activity in feces, resulting in an 11.5% reduction in cumulative NH loss. For Trial 3, the application of tannin directly to simulated barn floors also apparently decreased urease activity, resulting in an average reduction in cumulative NH emissions of 19.0%. Larger-scale trails are required to ascertain the effectiveness of tannin extracts in abating NH loss from dairy barn floors.
Journal of Dairy Science | 2016
M.J. Aguerre; M.C. Capozzolo; P. Lencioni; C. Cabral; M.A. Wattiaux
Our objective was to determine the effects of a tannin mixture extract on lactating cow performance, rumen fermentation, and N partitioning, and whether responses were affected by dietary crude protein (CP). The experiment was conducted as a split-plot with 24 Holstein cows (mean ± standard deviation; 669±55kg of body weight; 87±36 d in milk; 8 ruminally cannulated) randomly assigned to a diet of [dry matter (DM) basis] 15.3 or 16.6% CP (whole plot) and 0, 0.45, 0.90, or 1.80% of a tannin mixture in three 4×4 Latin squares within each level of CP (sub-plot). Tannin extract mixture was from quebracho and chestnut trees (2:1 ratio). Dietary CP level did not influence responses to tannin supplementation. A linear decrease in DM intake (25.5 to 23.4kg/d) was found, as well as a linear increase in milk/DM intake (1.62 to 1.75) and a trend for a linear decrease in fat-and-protein-corrected milk (38.4 to 37.1kg/d) with increasing levels of tannin supplementation. In addition, there was a negative linear effect for milk urea N (14.0 to 12.9mg/dL), milk protein yield (1.20 to 1.15kg), and concentration (2.87 to 2.83%). Furthermore, the change in milk protein concentration tended to be quadratic, and predicted maximum was 2.89% for a tannin mixture fed at 0.47% of dietary DM. Tannin supplementation reduced ruminal NH3-N (11.3 to 8.8mg/dL), total branched-chain volatile fatty acid concentration (2.97 to 2.47mol/100mol), DM, organic matter, CP, and neutral detergent fiber digestibility. Dietary tannin had no effect on intake N (587±63g/d), milk N (175±32g/d), or N utilization efficiency (29.7±4.4%). However, feeding tannin extracts linearly increased fecal N excretion (214 to 256g/d), but reduced urinary N (213 to 177g/d) and urinary urea N (141 to 116g/d) excretion. Decreasing dietary CP did not influence milk production, but increased N utilization efficiency (milk N/N intake; 0.27 to 0.33), and decreased milk urea N (15.4 to 11.8mg/dL), ruminal NH3-N (11.0 to 9.3mg/dL), apparent digestibility of DM (66.1 to 62.6%), organic matter (68.2 to 64.3%), and CP (62.9 to 55.9%), as well as urinary N excretion (168 vs. 232g/d). Results of this study indicated beneficial effects of 0.45% tannin extract in the diet on milk protein content. Increasing tannin extract levels in the diet lowered urinary N excretion, but had detrimental effects on DM intake, milk protein content, milk protein yield, and nutrient digestibility.