Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Alex Smith is active.

Publication


Featured researches published by M. Alex Smith.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Extreme diversity of tropical parasitoid wasps exposed by iterative integration of natural history, DNA barcoding, morphology, and collections

M. Alex Smith; Josephine J. Rodriguez; James B. Whitfield; Andrew R. Deans; Daniel H. Janzen; Winnie Hallwachs; Paul D. N. Hebert

We DNA barcoded 2,597 parasitoid wasps belonging to 6 microgastrine braconid genera reared from parapatric tropical dry forest, cloud forest, and rain forest in Area de Conservación Guanacaste (ACG) in northwestern Costa Rica and combined these data with records of caterpillar hosts and morphological analyses. We asked whether barcoding and morphology discover the same provisional species and whether the biological entities revealed by our analysis are congruent with wasp host specificity. Morphological analysis revealed 171 provisional species, but barcoding exposed an additional 142 provisional species; 95% of the total is likely to be undescribed. These 313 provisional species are extraordinarily host specific; more than 90% attack only 1 or 2 species of caterpillars out of more than 3,500 species sampled. The most extreme case of overlooked diversity is the morphospecies Apanteles leucostigmus. This minute black wasp with a distinctive white wing stigma was thought to parasitize 32 species of ACG hesperiid caterpillars, but barcoding revealed 36 provisional species, each attacking one or a very few closely related species of caterpillars. When host records and/or within-ACG distributions suggested that DNA barcoding had missed a species-pair, or when provisional species were separated only by slight differences in their barcodes, we examined nuclear sequences to test hypotheses of presumptive species boundaries and to further probe host specificity. Our iterative process of combining morphological analysis, ecology, and DNA barcoding and reiteratively using specimens maintained in permanent collections has resulted in a much more fine-scaled understanding of parasitoid diversity and host specificity than any one of these elements could have produced on its own.


Philosophical Transactions of the Royal Society B | 2005

DNA barcoding for effective biodiversity assessment of a hyperdiverse arthropod group: the ants of Madagascar

M. Alex Smith; Brian L. Fisher; Paul D. N. Hebert

The role of DNA barcoding as a tool to accelerate the inventory and analysis of diversity for hyperdiverse arthropods is tested using ants in Madagascar. We demonstrate how DNA barcoding helps address the failure of current inventory methods to rapidly respond to pressing biodiversity needs, specifically in the assessment of richness and turnover across landscapes with hyperdiverse taxa. In a comparison of inventories at four localities in northern Madagascar, patterns of richness were not significantly different when richness was determined using morphological taxonomy (morphospecies) or sequence divergence thresholds (Molecular Operational Taxonomic Unit(s); MOTU). However, sequence-based methods tended to yield greater richness and significantly lower indices of similarity than morphological taxonomy. MOTU determined using our molecular technique were a remarkably local phenomenon—indicative of highly restricted dispersal and/or long-term isolation. In cases where molecular and morphological methods differed in their assignment of individuals to categories, the morphological estimate was always more conservative than the molecular estimate. In those cases where morphospecies descriptions collapsed distinct molecular groups, sequence divergences of 16% (on average) were contained within the same morphospecies. Such high divergences highlight taxa for further detailed genetic, morphological, life history, and behavioral studies.


Proceedings of the National Academy of Sciences of the United States of America | 2007

DNA barcodes affirm that 16 species of apparently generalist tropical parasitoid flies (Diptera, Tachinidae) are not all generalists

M. Alex Smith; D. Monty Wood; Daniel H. Janzen; Winnie Hallwachs; Paul D. N. Hebert

Many species of tachinid flies are viewed as generalist parasitoids because what is apparently a single species of fly has been reared from many species of caterpillars. However, an ongoing inventory of the tachinid flies parasitizing thousands of species of caterpillars in Area de Conservación Guanacaste, northwestern Costa Rica, has encountered >400 species of specialist tachinids with only a few generalists. We DNA-barcoded 2,134 flies belonging to what appeared to be the 16 most generalist of the reared tachinid morphospecies and encountered 73 mitochondrial lineages separated by an average of 4% sequence divergence. These lineages are supported by collateral ecological information and, where tested, by independent nuclear markers (28S and ITS1), and we therefore view these lineages as provisional species. Each of the 16 apparently generalist species dissolved into one of four patterns: (i) a single generalist species, (ii) a pair of morphologically cryptic generalist species, (iii) a complex of specialist species plus a generalist, or (iv) a complex of specialists with no remaining generalist. In sum, there remained 9 generalist species among the 73 mitochondrial lineages we analyzed, demonstrating that a generalist lifestyle is possible for a tropical caterpillar parasitoid fly. These results reinforce the emerging suspicion that estimates of global species richness are likely underestimates for parasitoids (which may constitute as much as 20% of all animal life) and that the strategy of being a tropical generalist parasitic fly may be yet more unusual than has been envisioned for tachinids.


Molecular Ecology Resources | 2009

Integration of DNA barcoding into an ongoing inventory of complex tropical biodiversity

Daniel H. Janzen; Winnie Hallwachs; Patrick Blandin; John M. Burns; Jean Marie Cadiou; Isidro A. Chacón; Tanya Dapkey; Andrew R. Deans; Marc E. Epstein; Bernardo Espinoza; John G. Franclemont; William A. Haber; Mehrdad Hajibabaei; Jason P. W. Hall; Paul D. N. Hebert; Ian D. Gauld; Donald J. Harvey; Axel Hausmann; Ian J. Kitching; Don Lafontaine; Jean Fran Çois Landry; Claude Lemaire; Jacqueline Y. Miller; James S. Miller; Lee D. Miller; Scott E. Miller; Jose Montero; Eugene Munroe; Suzanne Rab Green; Sujeevan Ratnasingham

Inventory of the caterpillars, their food plants and parasitoids began in 1978 for todays Area de Conservacion Guanacaste (ACG), in northwestern Costa Rica. This complex mosaic of 120 000 ha of conserved and regenerating dry, cloud and rain forest over 0–2000 m elevation contains at least 10 000 species of non‐leaf‐mining caterpillars used by more than 5000 species of parasitoids. Several hundred thousand specimens of ACG‐reared adult Lepidoptera and parasitoids have been intensively and extensively studied morphologically by many taxonomists, including most of the co‐authors. DNA barcoding — the use of a standardized short mitochondrial DNA sequence to identify specimens and flush out undisclosed species — was added to the taxonomic identification process in 2003. Barcoding has been found to be extremely accurate during the identification of about 100 000 specimens of about 3500 morphologically defined species of adult moths, butterflies, tachinid flies, and parasitoid wasps. Less than 1% of the species have such similar barcodes that a molecularly based taxonomic identification is impossible. No specimen with a full barcode was misidentified when its barcode was compared with the barcode library. Also as expected from early trials, barcoding a series from all morphologically defined species, and correlating the morphological, ecological and barcode traits, has revealed many hundreds of overlooked presumptive species. Many but not all of these cryptic species can now be distinguished by subtle morphological and/or ecological traits previously ascribed to ‘variation’ or thought to be insignificant for species‐level recognition. Adding DNA barcoding to the inventory has substantially improved the quality and depth of the inventory, and greatly multiplied the number of situations requiring further taxonomic work for resolution.


Molecular Ecology Resources | 2008

DNA BARCODING: CO1 DNA barcoding amphibians: take the chance, meet the challenge

M. Alex Smith; Nikolai A. Poyarkov; Paul D. N. Hebert

Although a mitochondrial DNA barcode has been shown to be of great utility for species identification and discovery in an increasing number of diverse taxa, caution has been urged with its application to one of the most taxonomically diverse vertebrate groups — the amphibians. Here, we test three of the perceived shortcomings of a CO1 DNA barcodes utility with a group of Holarctic amphibians: primer fit, sequence variability and overlapping intra‐ and interspecific variability. We found that although the CO1 DNA barcode priming regions were variable, we were able to reliably amplify a CO1 fragment from degenerate primers and primers with G‐C residues at the 3′ end. Any overlap between intra‐ and interspecific variation in our taxonomic sampling was due to introgressive hybridization (Bufo/Anaxyrus), complex genetics (Ambystoma) or incomplete taxonomy (Triturus). Rates of hybridization and species discovery are not expected to be greater for amphibians than for other vertebrate groups, and thus problems with the utility of using a single mitochondrial gene for species identification will not be specific to amphibians. Therefore, we conclude that there is greater potential for a CO1 barcodes use with amphibians than has been reported to date. A large‐scale effort to barcode the amphibians of the world, using the same primary barcode region of CO1, will yield important findings for science and conservation.


PLOS ONE | 2008

A Revision of Malagasy Species of Anochetus Mayr and Odontomachus Latreille (Hymenoptera: Formicidae)

Brian L. Fisher; M. Alex Smith

Species inventories are essential for documenting global diversity and generating necessary material for taxonomic study and conservation planning. However, for inventories to be immediately relevant, the taxonomic process must reduce the time to describe and identify specimens. To address these concerns for the inventory of arthropods across the Malagasy region, we present here a collaborative approach to taxonomy where collectors, morphologists and DNA barcoders using cytochrome c oxidase 1 (CO1) participate collectively in a team-driven taxonomic process. We evaluate the role of DNA barcoding as a tool to accelerate species identification and description. This revision is primarily based on arthropod surveys throughout the Malagasy region from 1992 to 2006. The revision is based on morphological and CO1 DNA barcode analysis of 500 individuals. In the region, five species of Anochetus (A. boltoni sp. nov., A. goodmani sp. nov., A. grandidieri, and A. madagascarensis from Madagascar, and A. pattersoni sp. nov. from Seychelles) and three species of Odontomachus (O. coquereli, O. troglodytes and O. simillimus) are recognized. DNA barcoding (using cytochrome c oxidase 1 (CO1)) facilitated caste association and type designation, and highlighted population structure associated with reproductive strategy, biogeographic and evolutionary patterns for future exploration. This study provides an example of collaborative taxonomy, where morphology is combined with DNA barcoding. We demonstrate that CO1 DNA barcoding is a practical tool that allows formalized alpha-taxonomy at a speed, detail, precision, and scale unattainable by employing morphology alone.


PLOS ONE | 2012

Wolbachia and DNA barcoding insects: Patterns, potential, and problems

M. Alex Smith; Claudia Bertrand; Kate Crosby; Eldon S. Eveleigh; Jose Fernandez-Triana; Brian L. Fisher; Jason Gibbs; Mehrdad Hajibabaei; Winnie Hallwachs; Katharine R. Hind; Jan Hrcek; Da Wei Huang; Milan Janda; Daniel H. Janzen; Yanwei Li; Scott E. Miller; Laurence Packer; Donald L. J. Quicke; Sujeevan Ratnasingham; Josephine J. Rodriguez; Rodolphe Rougerie; Mark R Shaw; Cory S. Sheffield; Julie K. Stahlhut; Dirk Steinke; James B. Whitfield; Monty Wood; Xin Zhou

Wolbachia is a genus of bacterial endosymbionts that impacts the breeding systems of their hosts. Wolbachia can confuse the patterns of mitochondrial variation, including DNA barcodes, because it influences the pathways through which mitochondria are inherited. We examined the extent to which these endosymbionts are detected in routine DNA barcoding, assessed their impact upon the insect sequence divergence and identification accuracy, and considered the variation present in Wolbachia COI. Using both standard PCR assays (Wolbachia surface coding protein – wsp), and bacterial COI fragments we found evidence of Wolbachia in insect total genomic extracts created for DNA barcoding library construction. When >2 million insect COI trace files were examined on the Barcode of Life Datasystem (BOLD) Wolbachia COI was present in 0.16% of the cases. It is possible to generate Wolbachia COI using standard insect primers; however, that amplicon was never confused with the COI of the host. Wolbachia alleles recovered were predominantly Supergroup A and were broadly distributed geographically and phylogenetically. We conclude that the presence of the Wolbachia DNA in total genomic extracts made from insects is unlikely to compromise the accuracy of the DNA barcode library; in fact, the ability to query this DNA library (the database and the extracts) for endosymbionts is one of the ancillary benefits of such a large scale endeavor – for which we provide several examples. It is our conclusion that regular assays for Wolbachia presence and type can, and should, be adopted by large scale insect barcoding initiatives. While COI is one of the five multi-locus sequence typing (MLST) genes used for categorizing Wolbachia, there is limited overlap with the eukaryotic DNA barcode region.


Molecular Ecology Resources | 2011

Molecular detection of trophic links in a complex insect host-parasitoid food web

Jan Hrcek; Scott E. Miller; Donald L. J. Quicke; M. Alex Smith

Previously, host–parasitoid links have been unveiled almost exclusively by time‐intensive rearing, while molecular methods were used only in simple agricultural host–parasitoid systems in the form of species‐specific primers. Here, we present a general method for the molecular detection of these links applied to a complex caterpillar–parasitoid food web from tropical rainforest of Papua New Guinea. We DNA barcoded hosts, parasitoids and their tissue remnants and matched the sequences to our extensive library of local species. We were thus able to match 87% of host sequences and 36% of parasitoid sequences to species and infer subfamily or family in almost all cases. Our analysis affirmed 93 hitherto unknown trophic links between 37 host species from a wide range of Lepidoptera families and 46 parasitoid species from Hymenoptera and Diptera by identifying DNA sequences for both the host and the parasitoid involved in the interaction. Molecular detection proved especially useful in cases where distinguishing host species in caterpillar stage was difficult morphologically, or when the caterpillar died during rearing. We have even detected a case of extreme parasitoid specialization in a pair of Choreutis species that do not differ in caterpillar morphology and ecology. Using the molecular approach outlined here leads to better understanding of parasitoid host specificity, opens new possibilities for rapid surveys of food web structure and allows inference of species associations not already anticipated.


Molecular Ecology Resources | 2009

DNA barcode accumulation curves for understudied taxa and areas

M. Alex Smith; Jose Fernandez-Triana; Rob Roughley; Paul D. N. Hebert

Frequently, the diversity of umbrella taxa is invoked to predict patterns of other, less well‐known, life. However, the utility of this strategy has been questioned. We tested whether a phylogenetic diversity (PD) analysis of CO1 DNA barcodes could act as a proxy for standard methods of determining sampling efficiency within and between sites, namely that an accumulation curve of barcode diversity would be similar to curves generated using morphology or nuclear genetic markers. Using taxa at the forefront of the taxonomic impediment — parasitoid wasps (Ichneumonidae, Braconidae, Cynipidae and Diapriidae), contrasted with a taxon expected to be of low diversity (Formicidae) from an area where total diversity is expected to be low (Churchill, Manitoba), we found that barcode accumulation curves based on PD were significantly different in both slope and scale from curves generated using names based on morphological data, while curves generated using nuclear genetic data were only different in scale. We conclude that these differences clearly identify the taxonomic impediment within the strictly morphological alpha‐taxonomy of these hyperdiverse insects. The absence of an asymptote within the barcode PD trend of parasitoid wasps reflects the as yet incomplete sampling of the site (and more accurately its total diversity), while the morphological analysis asymptote represents a collision with the taxonomic impediment rather than complete sampling. We conclude that a PD analysis of standardized DNA barcodes can be a transparent and reproducible triage tool for the management and conservation of species and spaces.


Frontiers in Zoology | 2009

Invasions, DNA barcodes, and rapid biodiversity assessment using ants of Mauritius

M. Alex Smith; Brian L. Fisher

BackgroundUsing an understudied taxon (Hymenoptera, Formicidae) found on a tropical island (Mauritius) where native flora and fauna have been threatened by 400 years of habitat modification and introduced species, we tested whether estimated incidences of diversity and complementarity were similar when measured by standard morphological alpha-taxonomy or phylogenetic diversity (PD) based on a standardized mitochondrial barcode and corroborating nuclear marker.ResultsWe found that costs related to site loss (considered loss of evolutionary history measured as loss of barcode PD) were not significantly different from predictions made either a) using standard morphology-based taxonomy, or b) measured using a nuclear marker. Integrating morphology and barcode results permitted us to identify a case of initially morphologically-cryptic variation as a new and endemic candidate species. However, barcode estimates of the relative importance of each site or network of sites were dramatically affected when the species in question was known to be indigenous or introduced.ConclusionThis study goes beyond a mere demonstration of the rapid gains possible for diversity assessment using a standardized DNA barcode. Contextualization of these gains with ecological and natural history information is necessary to calibrate this wealth of standardized information. Without such an integrative approach, critical opportunities to advance knowledge will be missed.

Collaboration


Dive into the M. Alex Smith's collaboration.

Top Co-Authors

Avatar

Winnie Hallwachs

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Aj Fleming

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar

D. Monty Wood

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar

Daniel Janzen

National Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar

Daniel H. Janzen

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James B. Whitfield

Illinois Natural History Survey

View shared research outputs
Top Co-Authors

Avatar

Tanya Dapkey

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge