Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Arivazhagan is active.

Publication


Featured researches published by M. Arivazhagan.


Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2012

Vibrational spectroscopic, first-order hyperpolarizability and HOMO, LUMO studies of 4-chloro-2-(trifluoromethyl) aniline based on DFT calculations

M. Arivazhagan; V.P. Subhasini; A. Austine

The Fourier-transform infrared and FT-Raman spectra of 4-chloro-2-(trifluoromethyl) aniline (4C2TFA) were recorded in the region 4000-400 cm(-1) and 3500-50 cm(-1) respectively. Quantum chemical calculations of energies, geometrical structure and vibrational wavenumbers of 4C2TFA were carried out by density functional theory (DFT/B3LYP) method with 6-311+G(d,p) and 6-311++G(d,p) basis sets. The difference between the observed and scaled wavenumber values of most of the fundamentals is very small. The values of the total dipole moment (μ) and the first order hyperpolarizability (β) of the investigated compound were computed using B3LYP/6-311++G(d,p) calculations. The calculated results also show that 4C2TFA might have microscopic non-linear optical (NLO) behavior with non-zero values. A detailed interpretation of infrared and Raman spectra of 4C2TFA is also reported. The calculated HOMO-LUMO energy gap shows that charge transfer occurs within the molecule.


Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2011

Vibrational analysis of 4-amino pyrazolo (3,4-d) pyrimidine A joint FTIR, Laser Raman and scaled quantum mechanical studies

M. Arivazhagan; J. Senthil kumar

The FTIR and Laser Raman spectra of 4-amino pyrazolo (3,4-d) pyrimidine have been measured in the regions 4000-400 cm(-1) and 3500-100 cm(-1), respectively. Utilizing the observed FTIR and Laser Raman data, a complete vibrational assignment and analysis of the fundamental modes of the title compound were carried out. The vibrational frequency which were determined experimentally are compared with those theoretically from force field calculation based on ab initio HF/6-311+G**(d,p) and standard B3LYP/6-311+G**(d,p) methods and basis set combinations for optimized geometries. The observed FTIR and Laser Raman vibrational frequencies were analysed and compared with the theoretically predicted vibrational frequencies. The assignments of bands to various normal modes of the molecules were also carried out. A detailed interpretation of the infrared and Raman spectra of 4-amino pyrazolo (3,4-d) pyrimidine [4AP(3,4-D)P] is also reported based on total energy distribution (TED). The calculated HOMO and LUMO energies shows that charge transfer occur within the molecule. The theoretical FT-IR and FT-Raman spectra for the title molecule have also been constructed.


Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2011

Vibrational spectroscopic (FT-IR and FT-Raman), first-order hyperpolarizablity, HOMO, LUMO, NBO, Mulliken charges and structure determination of 2-bromo-4-chlorotoluene.

C. Arunagiri; M. Arivazhagan; A. Subashini

The FT-IR and FT-Raman spectra of 2-bromo-4-chlorotoluene (2B4CT) molecule have been recorded in the region 4000-400 cm(-1) and 3500-50 cm(-1), respectively. Optimized geometrical structures, harmonic vibrational frequencies, intensities, reduced mass, force constants and depolarization ratio have been computed by the B3 based (B3LYP) density functional methods using 6-31+G(d,p) and 6-311++G(d,p) basis sets. The observed FT-IR and FT-Raman vibrational frequencies are analysed and compared with theoretically predicted vibrational frequencies. The geometries and normal modes of vibration obtained from DFT method are in good agreement with the experimental data. The Mulliken charges, the natural bonding orbital (NBO) analysis, the values of electric dipole moment (μ) and the first-order hyperpolarizability (β) of the investigated molecule were computed using DFT calculations. The calculated HOMO and LUMO energies show that charge transfer occurs within molecule. The influences of bromine atom, chlorine atom and methyl group on the geometry of benzene and its normal modes of vibrations have also been discussed.


Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2013

PCM/TD-DFT analysis of 1-bromo-2,3-dichlorobenzene--a combined study of experimental (FT-IR and FT-Raman) and theoretical calculations.

M. Arivazhagan; P. Muniappan; R. Meenakshi; G. Rajavel

This study represents an integral approach towards understanding the electronic and structural aspects of 1-bromo-2,3-dichlorobenzene (BDCB). The experimental spectral bands were structurally assigned with the theoretical calculation, and the thermodynamic properties of the studied compound were obtained from the theoretically calculated frequencies. The relationship between the structure and absorption spectrum and effects of solvents have been discussed. It turns that the hybrid PBE1PBE functional with 6-311+G(d,p) basis provide reliable λ(max) when solvent effects are included in the model. The NBO analysis reveals that the studied compound presents a structural characteristic of electron-transfer within the compound. The frontier molecular orbitals (HOMO-LUMO) are responsible for the electron polarization and electron-transfer properties. The reactivity sites are identified by mapping the electron density into electrostatic potential surface (MESP). Besides, (13)C and (1)H have been calculated using the gauge-invariant atomic orbital (GIAO) method. The thermodynamic properties at different temperatures were calculated, revealing the correlations between standard heat capacity, standard entropy, standard enthalpy changes and temperatures. Furthermore, the studied compound can be used as a good nonlinear optical material due to the higher value of first hyper polarizability (5.7 times greater than that of urea (0.37289×10(-30) esu)). Finally, it is worth to mentioning that solvent induces a considerable red shift of the absorption maximum going from the gas phase, and a slight blue shift of the transition S(0)→S(1) going from less polar to more polar solvents.


Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2013

Molecular structure, vibrational spectral analysis, NBO, HOMO-LUMO and conformational studies of ninhydrin.

M. Arivazhagan; D. Anitha Rexalin

The FT-IR and FT-Raman vibrational spectra of ninhydrin have been recorded in the range 4000-400 cm(-1)and 3600-50 cm(-1), respectively. A detailed vibrational spectral analysis has been carried out and assignments of the observed fundamental bands have been proposed on the basis of peak positions and relative intensities. The optimized molecular geometry, vibrational frequencies, atomic charges, dipole moment, rotational constants and several thermodynamic parameters in the ground state are calculated using ab initio HF and density functional B3LYP methods with 6-311++G(d,p) basis set combination. In order to find the most optimized geometry, the energy calculations are carried out for various possible conformers. Keto and enol forms of ninhydrin are also studied. The condensed summary of the principal NBOs shows the occupancy, orbital energy and the qualitative pattern of delocalization interactions of ninhydrin. The calculated HOMO-LUMO energies reveal that charge transfer occurs within the molecule. The predicted first hyperpolarizability also shows that the ninhydrin molecule have good optical quality and nonlinear optical (NLO) behavior. With the help of specific scaling procedures, the observed vibrational wave numbers in FT-IR and FT-Raman spectra are analyzed and assigned to different normal modes of the molecule.


Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2015

Electronic structure investigations of 4-aminophthal hydrazide by UV–visible, NMR spectral studies and HOMO–LUMO analysis by ab initio and DFT calculations

K. Sambathkumar; S. Jeyavijayan; M. Arivazhagan

Combined experimental and theoretical studies were conducted on the molecular structure and vibrational spectra of 4-AminoPhthalhydrazide (APH). The FT-IR and FT-Raman spectra of APH were recorded in the solid phase. The molecular geometry and vibrational frequencies of APH in the ground state have been calculated by using the ab initio HF (Hartree-Fock) and density functional methods (B3LYP) invoking 6-311+G(d,p) basis set. The optimized geometric bond lengths and bond angles obtained by HF and B3LYP method show best agreement with the experimental values. Comparison of the observed fundamental vibrational frequencies of APH with calculated results by HF and density functional methods indicates that B3LYP is superior to the scaled Hartree-Fock approach for molecular vibrational problems. The difference between the observed and scaled wave number values of most of the fundamentals is very small. A detailed interpretation of the NMR spectra of APH was also reported. The theoretical spectrograms for infrared and Raman spectra of the title molecule have been constructed. UV-vis spectrum of the compound was recorded and the electronic properties, such as HOMO and LUMO energies, were performed by time dependent density functional theory (TD-DFT) approach. Finally the calculations results were applied to simulated infrared and Raman spectra of the title compound which show good agreement with observed spectra. And the temperature dependence of the thermodynamic properties of constant pressure (Cp), entropy (S) and enthalpy change (ΔH0→T) for APH were also determined.


Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2012

FT-IR, FT-Raman, NMR studies and ab initio-HF, DFT-B3LYP vibrational analysis of 4-chloro-2-fluoroaniline

M. Arivazhagan; D. Anitha Rexalin

The Fourier transform infrared (FT-IR) and Fourier transform Raman (FT-Raman) spectra of 4-chloro-2-fluoroaniline (CFA) have been recorded and analyzed. The equilibrium geometry, bonding features and harmonic vibrational frequencies have been investigated with the help of ab initio and density functional theory (DFT) methods. The assignments of the vibrational spectra have been carried out with the help of normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology. The (1)H and (13)C nuclear magnetic resonance (NMR) chemical shifts of the molecule are calculated by the Gauge including atomic orbital (GIAO) method. The first order hyperpolarizability (β(0)) of this novel molecular system and related properties (β, α(0) and Δα) of CFA are calculated using B3LYP/6-311++G(d,p) and HF/6-311++G(d,p) methods on the finite-field approach. The calculated results also show that the CFA molecule might have microscopic nonlinear optical (NLO) behavior with non-zero values. Stability of the molecule arising from hyper conjugative interactions, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The result confirms the occurrence of intramolecular charge transfer (ICT) within the molecule. The HOMO-LUMO energies UV-vis spectral analysis and MEP are performed by B3LYP/6-311++G(d,p) approach. A detailed interpretation of the infrared and Raman spectra of CFA is also reported based on total energy distribution (TED). The difference between the observed and scaled wave number values of the most of the fundamentals is very small.


Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2011

Molecular structure, vibrational spectroscopic, first hyperpolarizability, NBO and HOMO, LUMO studies of P-Iodobenzene sulfonyl chloride

M. Arivazhagan; S. Prabhakaran; R. Gayathri

In this work, the experimental and theoretical vibrational spectra of P-Iodobenzene sulfonyl chloride (P-IBSC) were studied. P-IBSC and its derivatives present in many biologically active compounds. Because of their spectroscopic properties and chemical significance in particular, sulfonyl chloride and its derivatives have been studied extensively by spectroscopic (FTIR and FT-Raman spectra) and theoretical methods. The infrared spectra of these compounds were recorded in condensed states, while the Raman spectra were measured without polarization using both parallel and perpendicular polarizations of scattered light. The molecular geometry, highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO), first order hyperpolarizability and thermodynamic properties of P-IBSC have been computed with the help of density functional theory (B3LYP) and ab initio (HF) methods with the LanL2DZ basis set. The HOMO and LUMO energy gap explains the charge transfer interactions taking place within the molecule. NBO study explains charge delocalization of the molecule. The contributions of the different modes to each wave number were determined using potential energy distributions (PEDs). The experimental and calculated results were consistent with each other.


Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2011

Vibrational spectral analysis and first hyperpolarizability studies of 1-bromonaphthalene based on ab initio and DFT methods

M. Arivazhagan; D. Anitha Rexalin

In this work, the experimental and theoretical vibrational spectra of 1-bromonaphthalene (1-BN) were studied. FTIR and FT Raman spectra were recorded in the region 4000-400 cm(-1) and 3500-50 cm(-1), respectively. The structural and spectroscopic data of the molecule in the ground state were calculated by using ab initio Hartree-Fock and density functional method (B3LYP) with the 6-311++G(d,p) basis set. The vibrational frequencies were calculated and scaled values were compared with experimental FTIR and FT Raman spectra. The observed and calculated frequencies are found to be in good agreement. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. The optimized geometric parameters were calculated. The predicted first hyperpolarizability also shows that the molecule might have a reasonably good nonlinear optical (NLO) behaviour. The calculated HOMO-LUMO energy gap reveals that charge transfer occurs within the molecule.


Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2013

Conformational stability, vibrational spectra, molecular structure, NBO and HOMO-LUMO analysis of 5-nitro-2-furaldehyde oxime based on DFT calculations.

M. Arivazhagan; S. Jeyavijayan; J. Geethapriya

The FTIR and FT-Raman spectra of 5-nitro-2-furaldehyde oxime (NFAO) have been recorded in the regions 4000-400 cm(-1) and 3500-50 cm(-1), respectively. The total energies of different conformations have been obtained from DFT (B3LYP) with 6-311++G(d,p) basis set calculations. The computational results identify the most stable conformer of NFAO as the C1 form. Utilizing the observed FTIR and FT-Raman data, a complete vibrational assignment and analysis of the fundamental modes of the compound were carried out. The optimum molecular geometry, harmonic vibrational frequencies, infrared intensities and Raman scattering activities, were calculated by density functional theory (DFT/B3LYP) method with 6-31+G(d,p) and 6-311++G(d,p) basis sets. The difference between the observed and scaled wavenumber values of most of the fundamentals is very small. A detailed interpretation of the infrared and Raman spectra of NFAO is also reported based on total energy distribution (TED). Stability of the molecule arising from hyperconjugative interactions, charge delocalization have been analyzed using natural bond orbital (NBO) analysis. Besides, molecular electrostatic potential (MEP), HOMO and LUMO analysis, and several thermodynamic properties were performed by the DFT method. Mullikens net charges have been calculated and compared with the natural atomic charges. Ultraviolet-visible spectrum of the title molecule has also been calculated using TD-DFT method.

Collaboration


Dive into the M. Arivazhagan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

V.P. Subhasini

Jeppiaar Engineering College

View shared research outputs
Top Co-Authors

Avatar

S. Jeyavijayan

J. J. College of Engineering and Technology

View shared research outputs
Top Co-Authors

Avatar

C. Arunagiri

Government Arts College

View shared research outputs
Top Co-Authors

Avatar

G. Rajavel

Government Arts College

View shared research outputs
Top Co-Authors

Avatar

P. Muniappan

Government Arts College

View shared research outputs
Top Co-Authors

Avatar

A. Austine

Government Arts College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge