Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Asunción Alsina is active.

Publication


Featured researches published by M. Asunción Alsina.


Biochimica et Biophysica Acta | 1996

Coating liposomes with collagen (Mr 50,000) increases uptake into liver.

M. JoséFonseca; M. Asunción Alsina; Francesca Reig

Collagen-coated small unilamellar liposomes were prepared by incubation of two hydrophobic derivatives of collagen (average Mr 50 000) with preformed vesicles. The introduction of hexyl and lauryl residues to the collagen molecule improved by 10-fold the ability of collagen to coat liposomes. In vitro stability of the different coated vesicles prepared, was studied by their ability to retain entrapped carboxyfluorescein as a function of the time. Coated vesicles were clearly more stable in vitro than control liposomes, except for those containing the lauryl derivative in a protein/phospholipid weight ratio higher than 10(-3). Vesicle clearance from circulation as well as tissue distribution were also determined. Pharmacokinetics (determined by both fluorescence and radioactive techniques) were highly dependent on the injected dose, phospholipids used and the content of collagen. Half-lives were maximum for liposomes composed of saturated phospholipids injected at a dose of 2 micromol phospholipid. Besides, blood elimination of collagen-containing vesicles was about 2-fold faster and liver uptake 1.5 to 2-fold higher than control liposomes.


Journal of Physical Chemistry B | 2010

A Langmuir Monolayer Study of the Interaction of E1(145−162) Hepatitis G Virus Peptide with Phospholipid Membranes

Maria Jesús Sánchez-Martín; Isabel Haro; M. Asunción Alsina; M. Antònia Busquets; Montserrat Pujol

E1(145-162), a peptide corresponding to the structural protein E1 of the GB virus C, has been shown earlier to bind at pH 7.4 to vesicles containing 1,2-dimyiristoyl-sn-glycero-3-phospho-rac-(1-glycerol)] (DMPG) and 1,2-dimyiristoyl-sn-glycero-3-phosphocholine (DMPC) phospholipids. To deepen the understanding of the interaction of E1(145-162) with the lipid membrane, in this paper, we report a detailed study of the surface properties of peptide, miscibility properties, and behavior of mixed monomolecular films of it and three phospholipids DMPG, DMPC, and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPG). These studies were performed using the Langmuir balance by means of surface adsorption studies, surface pressure-mean molecular area compression isotherms, and penetration kinetics. The Brewster angle microscopy (BAM) was used to study the morphological properties of pure peptide and the mixed monolayers. The results show us that the peptide showed surface activity concentration dependent when injected beneath a buffered solution (HEPES/NaCl, pH 7.4). This tendency to accumulate into the air/water interface confirms its potential capacity to interact with membranes; the higher penetration of peptide into phospholipids is attained when the monolayers are in the liquid expanded state and the lipids are charged negatively maybe due to its negative electric charge that interacts with the positive global charge of the peptide sequence. The area per molecule values obtained suggested that the main arrangement structure for E1(145-162) peptide is the alpha-helical at the air-water interface that agreed with computational prediction calculations. Miscibility studies indicated that mixtures become thermodynamically favored at low peptide molar fraction.


Biopolymers | 1998

A fluorescence and CD study on the interaction of synthetic lipophilic hepatitis B virus preS(120–145) peptide analogues with phospholipid vesicles

Yolanda Cajal; Francesc Rabanal; M. Asunción Alsina; Francesca Reig

The interaction of the immunogenic peptide of human hepatitis B virus (HBV) preS(120-145), including B and T epitopes, with phospholipid vesicles has been studied by fluorescence techniques and CD. In addition, interaction of three lipopeptides derived from preS(120-145) containing stearoyl, cholanoyl, and tripalmitoyl-S-glyceryl-cysteine (Pam3C) SS moieties with dipalmitoylphosphatidylcholine (DPPC) has been investigated by polarization fluorescence spectroscopy. Fluorescence experiments showed an increase in fluorescence intensity and a blue shift of the maximum emission wavelength upon interaction of preS(120-145) with DPPC vesicles below the transition temperature (Tc), indicating that the tryptophan moiety enters a more hydrophobic environment. Moreover, fluorescence polarization experiments showed that the peptide decreased the membrane fluidity at the hydrophobic core, increasing the Tc of the lipid and decreasing the amplitude of the change of fluorescence polarization associated with the cooperative melting of 1,6-diphenyl-1,3,5-hexatriene labeled vesicles. The absence of leakage of vesicle-entrapped carboxyfluorescein indicates that the peptide did not promote vesicle lysis. Besides, the three lipopeptides derived from preS(120-145) showed a more pronounced rigidifying effect at the hydrophobic core of the bilayer, with a significative increase in the Tc. Stearoyl- and cholanoyl-preS(120-145) restricted the motion of lipids also at the polar surface, whereas Pam3CSS-preS(120-145) did not alter the polar head group order. Finally, CD studies in 2,2,2-trifluoroethanol or in presence of vesicles suggested that the bound peptide adopted amphiphilic alpha-helical and beta-sheet structures, with an important contribution of the beta-turn. It is concluded that preS(120-145) can interact with the lipid membrane through the formation of an amphipathic structure combination of beta-sheet and alpha-helix aligned parallel to the membrane surface, involving the N-terminal residues, and penetrating only a short distance into the hydrophobic core. The C-terminal part, with a combination of beta-turn and beta-sheet structure, remains at the outer part of the bilayer, being potentially accessible to immunocompetent cells. Furthermore, coupling of an hydrophobic moiety to the N-terminal part of the peptide favors anchoring to the membrane, probably facilitating interaction of the peptide with the immunoglobulin receptor. These results are in agreement with the induction of immune response by preS(120-145) and with the enhanced immunogenicity found in general for lipid-conjugated immunopeptides.


Journal of Physical Chemistry B | 2008

A monolayer study on interactions of docetaxel with model lipid membranes.

Alfonso Fernandez-Botello; Francesc Comelles; M. Asunción Alsina; Pilar Cea; F. Reig

Docetaxel (DCT) is an antineoplastic drug for the treatment of a wide spectrum of cancers. DCT surface properties as well as miscibility studies with l-alpha-dipalmitoyl phosphatidylcholine (DPPC), which constitutes the main component of biological membranes, are comprehensively described in this contribution. Penetration studies have revealed that when DCT is injected under DPPC monolayers compressed to different surface pressures, it penetrates into the lipid monolayer promoting an increase in the surface pressure. DCT is a surface active molecule able to decrease the surface tension of water and to form insoluble films when spread on aqueous subphases. The maximum surface pressure reached after compression of a DCT Langmuir film was 13 mN/m. Miscibility of DPPC and DCT in Langmuir films has been studied by means of thermodynamic properties as well as by Brewster angle microscopy (BAM) analysis of the mixed films at the air-water interface, concluding that DPPC and DCT are miscible and they form non-ideally mixed monolayers at the air-water interface. Helmholtz energies of mixing revealed that no phase separation occurs. In addition, Helmholtz energies of mixing become more negative with decreasing areas per molecule, which suggests that the stability of the mixed monolayers increases as the monolayers become more condensed. Compressibility values together with BAM images indicate that DCT has a fluidizing effect on DPPC monolayers.


Journal of Colloid and Interface Science | 2011

Analysis of HIV-1 fusion peptide inhibition by synthetic peptides from E1 protein of GB virus C

Maria Jesús Sánchez-Martín; Kalina Hristova; Montserrat Pujol; María J. Gómara; Isabel Haro; M. Asunción Alsina; M. Antònia Busquets

The aim of this study was to identify proteins that could inhibit the activity of the peptide sequence representing the N-terminal of the surface protein gp41 of HIV, corresponding to the fusion peptide of the virus (HIV-1 FP). To do this we synthesized and studied 58 peptides corresponding to the envelope protein E1 of the hepatitis G virus (GBV-C). Five of the E1 synthetic peptides: NCCAPEDIGFCLEGGCLV (P7), APEDIGFCLEGGCLVALG (P8), FCLEGGCLVALGCTICTD (P10), QAGLAVRPGKSAAQLVGE (P18) and AQLVGELGSLYGPLSVSA (P22) were capable of inhibiting the leakage of vesicular contents caused by HIV-1 FP. A series of experiments were carried out to determine how these E1 peptides interact with HIV-1 FP. Our studies analyzed the interactions with and without the presence of lipid membranes. Isothermal titration calorimetry revealed that the binding of P7, P18 and P22 peptides to HIV-1 FP is strongly endothermic, and that binding is entropy-driven. Gibbs energy for the process indicates a spontaneous binding between E1 peptides and HIV-1 FP. Moreover, confocal microscopy of Giant Unilamellar Vesicles revealed that the disruption of the lipid bilayer by HIV-1 FP alone was inhibited by the presence of any of the five selected peptides. Our results highlight that these E1 synthetic peptides could be involved in preventing the entry of HIV-1 by binding to the HIV-1 FP. Therefore, the continued study into the interaction between GBV-C peptides and HIV-1 FP could lead to the development of new therapeutic agents for the treatment of AIDS.


Biophysical Chemistry | 2009

Behaviour of a peptide sequence from the GB virus C/hepatitis G virus E2 protein in Langmuir monolayers : Its interaction with phospholipid membrane models

Silvia Pérez-López; M. Nieto-Suárez; Concepció Mestres; M. Asunción Alsina; Isabel Haro; Nuria Vila-Romeu

The GB virus C/hepatitis G virus (GBV C/HGV) is a Flaviviridae member that despite its non pathogenicity, has become of great interest given that it could inhibit the replication of the human immunodeficiency virus (HIV). Therefore, a better knowledge of the virus peptides involved in the cellular membrane fusion mechanism has become our aim. The selected peptide, named E2(347-363), corresponds to the GBV-C/HGV E2 protein and has been synthesized in order to study its interaction with in vitro membrane models. Two phospholipids, varying the charge and the unsaturations of the hydrocarbon chain have been chosen: 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dioleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (sodium salt) (DOPG). For our porpoise, we have used the Langmuir monolayer technique and Brewster angle microscopy (BAM) to gain deeper insight into the peptide/lipid interactions. The results obtained allow us to argue in favour of considering E2(347-363) a success candidate for developing further experiments in order to determine its potential role in the GBV C/HGV virus/cell membrane fusion process.


Biochimica et Biophysica Acta | 2011

Effect of E1(64–81) hepatitis G peptide on the in vitro interaction of HIV-1 fusion peptide with membrane models

Maria Jesús Sánchez-Martín; M. Antònia Busquets; Victoria Girona; Isabel Haro; M. Asunción Alsina; Montserrat Pujol

One way to gain information about the fusogenic potential of virus-derived synthetic peptides is to examine their interfacial properties and subsequently to study them in monolayers and bilayers. Here, we characterize the physicochemical surface properties of the peptide E1(64-81), whose sequence is AQLVGELGSLYGPLSVSA. This peptide is derived from the E1 structural protein of GBV-C/HGV which was previously shown to inhibit leakage of vesicular contents caused by the HIV-1 fusion peptide (HIV-1 FP). Mixed isotherms of E1(64-81) and HIV-1 FP were obtained and their Brewster angle microscopy (BAM) and atomic force microscopy (AFM) images showed that the peptide mixture forms a different structure that is not present in the pure peptide images. Studies with lipid monolayers (1,2-dimyristoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (DMPG) and 1,2-dipalmitoyl-sn-glycero-3-phospho-rac-(1-glycerol) (DPPG)) show that both peptides interact with all the lipids assayed but the effect that HIV-1 FP has on the monolayers is reduced in the presence of E1(64-81). Moreover, differential scanning calorimetry (DSC) experiments show the capacity of HIV-1 FP to modify the properties of the bilayer structure and the capacity of E1(64-81) to inhibit these modifications. Our results indicate that E1(64-81) interacts with HIV-1 FP to form a new structure, and that this may be the cause of the previously observed inhibition of the activity of HIV-1 FP by E1(64-81).


FEBS Journal | 2005

Interaction of synthetic peptides corresponding to hepatitis G virus (HGV/GBV-C) E2 structural protein with phospholipid vesicles

Cristina Larios; Bart Christiaens; M. José Gómara; M. Asunción Alsina; Isabel Haro

The interaction with phospholipid bilayers of two synthetic peptides with sequences corresponding to a segment next to the native N‐terminus and an internal region of the E2 structural hepatitis G virus (HGV/GBV‐C) protein [E2(7–26) and E2(279–298), respectively] has been characterized. Both peptides are water soluble but associate spontaneously with bilayers, showing higher affinity for anionic than zwitterionic membranes. However, whereas the E2(7–26) peptide is hardly transferred at all from water to the membrane interface, the E2(279–298) peptide is able to penetrate into negatively charged bilayers remaining close to the lipid/water interface. The nonpolar environment clearly induces a structural transition in the E2(279–298) peptide from random coil to α‐helix, which causes bilayer perturbations leading to vesicle permeabilization. The results indicate that this internal segment peptide sequence is involved in the fusion of HGV/GBV‐C to membrane.


ChemPhysChem | 2011

Biophysical Investigations of GBV‐C E1 Peptides as Potential Inhibitors of HIV‐1 Fusion Peptide

Maria Jesús Sánchez-Martín; Patricia Urbán; Montserrat Pujol; Isabel Haro; M. Asunción Alsina; M. Antònia Busquets

Five peptide sequences corresponding to the E1 protein of GBV-C [NCCAPEDIGFCLEGGCLV (P7), APEDIGFCLEGGCLVALG (P8), FCLEGGCLVALGCTICTD (P10), QAGLAVRPGKSAAQLVGE (P18), and AQLVGELGSLYGPLSVSA (P22)] were synthesized because they were capable of interfering with the HIV-1 fusion peptide (HIV-1 FP)-vesicle interaction. In this work the interaction of these peptides with the HIV-1 FP, as well as with membrane models, was analyzed to corroborate their inhibition ability and to understand if the interaction with the fusion peptide takes place in solution or at the membrane level. Several studies were carried out on aggregation and membrane fusion, surface Plasmon resonance, and conformational analysis by circular dichroism. Moreover, in vitro toxicity assays, including cytotoxicity studies in 3T3 fibroblasts and hemolysis assays in human red blood cells, were performed to evaluate if these peptides could be potentially used in anti-HIV-1 therapy. Results show that P10 is not capable of inhibiting membrane fusion caused by HIV-1 and it aggregates liposomes and fuses membranes, thus we decided to discard it for futures studies. P18 and P22 do not inhibit membrane fusion, but they inhibit the ability of HIV-1 FP to form pores in bilayers, thus we have not discarded them yet. P7 and P8 were selected as the best candidates for future studies because they are capable of inhibiting membrane fusion and the interaction of HIV-1 FP with bilayers. Therefore, these peptides could be potentially used in future anti-HIV-1 research.


Analytical and Bioanalytical Chemistry | 2009

Fluorescence study of the dynamic interaction between E1(145–162) sequence of hepatitis GB virus C and liposomes

Maria Jesús Sánchez-Martín; José Manuel Amigo; Montserrat Pujol; Isabel Haro; M. Asunción Alsina; M. Antònia Busquets

The physicochemical characterization of the peptide sequence E1(145–162) corresponding to the structural protein E1 of the hepatitis G virus was done by studying its interaction with model membranes. Small unilamellar vesicles (SUVs) of dimyristoylphosphatidylglycerol or dimyristoylphosphatidylcholine were chosen as mimetic membranes. Peptide incorporation and location in the phospholipid bilayer was investigated by fluorescence anisotropy with SUVs labeled with diphenylhexatriene (DPH) or trimethylammonium–DPH. The addition of the peptide E1(145–162) showed significant changes in the anisotropy values of the probe located at the air/water interface. These results indicate that the peptide E1(145–162) preferably interacts with the lipid surface without penetrating inside the bilayer. A series of fluorescence experiments based on tryptophan peptide fluorescence were modeled by means of multivariate curve resolution-alternating least squares (MCR-ALS) algorithm to further study the peptide interaction with bilayers at different temperatures. The preliminary results obtained with MCR-ALS showed how the peptide concentration decay is directly linked to the appearance of a new specie, which corresponds to the lipid-peptide binding. These results provide useful information for the design of synthetic immunopeptides that can be incorporated into a liposomal system with potential to promote a direct delivery of the membrane-incorporated immunogen to the immunocompetent cells, thus increasing the immuno response from the host.

Collaboration


Dive into the M. Asunción Alsina's collaboration.

Top Co-Authors

Avatar

Isabel Haro

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Francesca Reig

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dolores Polo

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Francesc Rabanal

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge