Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Avanzo is active.

Publication


Featured researches published by M. Avanzo.


Acta Oncologica | 2006

Use of motion tracking in stereotactic body radiotherapy: Evaluation of uncertainty in off-target dose distribution and optimization strategies

F. Casamassima; Carlo Cavedon; Paolo Francescon; Joseph Stancanello; M. Avanzo; S Cora; P Scalchi

Spatial accuracy in extracranial radiosurgery is affected by organ motion. Motion tracking systems may be able to avoid PTV enlargement while preserving treatment times, however special attention is needed when fiducial markers are used to identify the target can move with respect to organs at risk (OARs). Ten patients treated by means of the Synchrony system were taken into account. Sparing of irradiated volume and of complication probability were estimated by calculating treatment plans with a motion tracking system (Cyberknife Synchrony, Sunnyvale, CA, USA) and a PTV-enlargement strategy for ten patients. Six patients were also evaluated for possible inaccuracy of estimation of dose to OARs due to relative movement between PTV and OAR during respiration. Dose volume histograms (DVH) and Equivalent Uniform Dose (EUD) were calculated for the organs at risk. In the cases for which the target moved closer to the OAR (three cases of six), a small but significant increase was detected in the DVH and EUD of the OAR. In three other cases no significant variation was detected. Mean reduction in PTV volume was 38% for liver cases, 44% for lung cases and 8.5% for pancreas cases. NTCP for liver reduced from 23.1 to 14.5% on average, for lung it reduced from 2.5 to 0.1% on average. Significant uncertainty may arise from the use of a motion-tracking device in determination of dose to organs at risk due to the relative motion between PTV and OAR. However, it is possible to limit this uncertainty. The breathing phase in which the OAR is closer to the PTV should be selected for planning. A full understanding of the dose distribution would only be possible by means of a complete 4D-CT representation.


Medical Physics | 2012

In vivo dosimetry with radiochromic films in low-voltage intraoperative radiotherapy of the breast.

M. Avanzo; Alexandra Rink; Andrea Dassie; Samuele Massarut; Mario Roncadin; E. Borsatti; E. Capra

PURPOSE EBT2 radiochromic films were studied and used for in vivo dosimetry in targeted intraoperative radiotherapy (TARGIT), a technique in which the Intrabeam system (Carl Zeiss, Oberkochen, Germany) is used to perform intraoperative partial breast irradiation with x-rays of 50 kV(p). METHODS The energy of the radiation emitted by the Intrabeam with the different spherical applicators, under 1 and 2 cm of solid water, and under the tungsten impregnated rubber used for shielding of the heart in TARGIT of the breast, was characterized with measurements of half-value layer (HVL). The stability of response of EBT2 was verified inside this range of energies. EBT2 films were calibrated using the red and green channels of the absorption spectrum in the 0-20 Gy dose range delivered by the Intrabeam x-rays. The dependence of film response on temperature during irradiation was measured. For in vivo dosimetry, pieces of radiochromic films wrapped in sterile envelopes were inserted after breast conserving surgery and before TARGIT into the excision cavity, on the skin and on the shielded pectoralis fascia for treatments of the left breast. RESULTS HVLs of the Intrabeam in TARGIT of the breast correspond to effective energies of 20.7-36.3 keV. The response of EBT2 was constant inside this range of energies. We measured the dose to the target tissue and to organs at risk in 23 patients and obtained an average dose of 13.52 ± 1.21 Gy to the target tissue. Dose to the skin in close proximity to the applicator was 2.22 ± 0.97 Gy, 0.29 ± 0.17 Gy at 5-10 cm from the applicator, and 0.08 ± 0.07 Gy at more than 10 cm from the applicator. Dose to the pectoral muscle for left breast treatment was 0.57 ± 0.23 Gy. CONCLUSIONS Our results show that EBT2 films are accurate at the beam energies, dose range, and irradiation temperature found in TARGIT and that in vivo dosimetry in TARGIT with EBT2 films wrapped in sterile envelopes is a feasible procedure. Measured dose to the organs at risk indicates that the technique is safe from side effects to the skin and the heart.


Neurosurgical Review | 2009

Spinal radiosurgery: technology and clinical outcomes

M. Avanzo; P. Romanelli

The development of computer-based image guidance has allowed stereotactic radiosurgery and radiotherapy to be freed from the constraints imposed by the stereotactic frames once required for intracranial radiosurgery. This freedom has led to the application of radiosurgery to targets outside the brain. In this paper, we briefly review the technologies, treatment parameters, and clinical outcomes of radiosurgical treatment for spinal pathology, including metastatic tumors and rare but challenging lesions such as arteriovenous malformations and benign tumors. A special emphasis is put on the newest development, fiducial-less robotic radiosurgery. Spinal radiosurgery is associated with excellent rates of tumor control and pain relief with a good dose sparing of the highly sensitive spinal cord. Further research is required to optimize treatment strategies and to assess clinical benefits and toxicity in the long term.


Physica Medica | 2013

Dose to the skin in helical tomotherapy: Results of in vivo measurements with radiochromic films

M. Avanzo; Annalisa Drigo; Stefano Ren kaiser; A. Roggio; Giovanna Sartor; Paola Chiovati; Giovanni Franchin; Maurizio Mascarin; E. Capra

PURPOSE The aim of this study is to report results of measurements of dose to the skin in vivo with radiochromic EBT films in treatments with helical tomotherapy. METHODS AND MATERIALS In vivo measurements were performed by applying pieces of radiochromic films to the skin or to the inner side of thermoplastic mask before the treatment. The sites of treatment included scalp, brain, head and neck, cranio-spinal axis and lower limbs. Skin dosimetry was performed in a patient who experienced grade 3-4 acute side effects to the skin shortly after the first treatment sessions. For each patient we measured the setup errors using the daily MVCT acquired for image guidance of the treatment. EBT films were read with a flatbed Epson Expression scanner and images were processed with an in-house written routine. RESULTS A total of 96 measurements of dose to the skin performed on 14 patients. The mean difference and standard error of the mean difference between measured and TPS-calculated dose was -9.2% ± 2.6% for all treatments, -6.6% ± 2.6% for head and neck treatments. These differences were statistically significant at the 0.05 significance level (t-Student test). Planned dose and dose range in the region of measurements were not correlated with dose discrepancy. CONCLUSIONS Radiochromic EBT films are suitable detectors for surface dose measurements in tomotherapy treatments. Results show that TPS overestimates dose to the skin measured with EBT radiochromic films. In vivo skin measurements with EBT films are a useful tool for quality assurance of tomotherapy treatments, as the treatment planning system may not give accurate dose values at the surface.


Medical Physics | 2010

Correlation of a hypoxia based tumor control model with observed local control rates in nasopharyngeal carcinoma treated with chemoradiotherapy.

M. Avanzo; Joseph Stancanello; Giovanni Franchin; Giovanna Sartor; R. Jena; Annalisa Drigo; Andrea Dassie; Marco Gigante; E. Capra

PURPOSE To extend the application of current radiation therapy (RT) based tumor control probability (TCP) models of nasopharyngeal carcinoma (NPC) to include the effects of hypoxia and chemoradiotherapy (CRT). METHODS A TCP model is described based on the linear-quadratic model modified to account for repopulation, chemotherapy, heterogeneity of dose to the tumor, and hypoxia. Sensitivity analysis was performed to determine which parameters exert the greatest influence on the uncertainty of modeled TCP. On the basis of the sensitivity analysis, the values of specific radiobiological parameters were set to nominal values reported in the literature for NPC or head and neck tumors. The remaining radiobiological parameters were determined by fitting TCP to clinical local control data from published randomized studies using both RT and CRT. Validation of the model was performed by comparison of estimated TCP and average overall local control rate (LCR) for 45 patients treated at the institution with conventional linear-accelerator-based or helical tomotherapy based intensity-modulated RT and neoadjuvant chemotherapy. RESULTS Sensitivity analysis demonstrates that the model is most sensitive to the radiosensitivity term alpha and the dose per fraction. The estimated values of alpha and OER from data fitting were 0.396 Gy(-1) and 1.417. The model estimate of TCP (average 90.9%, range 26.9%-99.2%) showed good correlation with the LCR (86.7%). CONCLUSIONS The model implemented in this work provides clinicians with a useful tool to predict the success rate of treatment, optimize treatment plans, and compare the effects of multimodality therapy.


Oncogene | 2016

Radiotherapy-induced miR-223 prevents relapse of breast cancer by targeting the EGF pathway

Linda Fabris; Stefania Berton; Francesca Citron; Sara D'Andrea; Ilenia Segatto; Milena S. Nicoloso; Samuele Massarut; Joshua Armenia; Gaetano Zafarana; Simona Rossi; Cristina Ivan; Tiziana Perin; J. S. Vaidya; M. Avanzo; Mario Roncadin; Monica Schiappacassi; Robert G. Bristow; George A. Calin; Gustavo Baldassarre; Barbara Belletti

In breast cancer (BC) patients, local recurrences often arise in proximity of the surgical scar, suggesting that response to surgery may have a causative role. Radiotherapy (RT) after lumpectomy significantly reduces the risk of recurrence. We investigated the direct effects of surgery and of RT delivered intraoperatively (IORT), by collecting irradiated and non-irradiated breast tissues from BC patients, after tumor removal. These breast tissue specimens have been profiled for their microRNA (miR) expression, in search of differentially expressed miR among patients treated or not with IORT. Our results demonstrate that IORT elicits effects that go beyond the direct killing of residual tumor cells. IORT altered the wound response, inducing the expression of miR-223 in the peri-tumoral breast tissue. miR-223 downregulated the local expression of epidermal growth factor (EGF), leading to decreased activation of EGF receptor (EGFR) on target cells and, eventually, dampening a positive EGF–EGFR autocrine/paracrine stimulation loop induced by the post-surgical wound-healing response. Accordingly, both RT-induced miR-223 and peri-operative inhibition of EGFR efficiently prevented BC cell growth and reduced recurrence formation in mouse models of BC. Our study uncovers unknown effects of RT delivered on a wounded tissue and prompts to the use of anti-EGFR treatments, in a peri-operative treatment schedule, aimed to timely treat BC patients and restrain recurrence formation.


Scientific Reports | 2017

Loss of p27kip1 increases genomic instability and induces radio-resistance in luminal breast cancer cells

Stefania Berton; Martina Cusan; Ilenia Segatto; Francesca Citron; Sara D’Andrea; Sara Benevol; M. Avanzo; Alessandra Dall’Acqua; Monica Schiappacassi; Robert G. Bristow; Barbara Belletti; Gustavo Baldassarre

Genomic instability represents a typical feature of aggressive cancers. Normal cells have evolved intricate responses to preserve genomic integrity in response to stress, such as DNA damage induced by γ-irradiation. Cyclin-dependent kinases (CDKs) take crucial part to these safeguard mechanisms, but involvement of CDK-inhibitors, such as p27Kip1, is less clear. We generated immortalized fibroblasts from p27kip1 knock-out (KO) mouse embryos and re-expressed p27kip1 WT, or its mutant forms, to identify the function of different domains. We γ-irradiated fibroblasts and observed that loss of p27Kip1 was associated to accumulation of residual DNA damage, increased number of mitotic aberration and, eventually, to survival advantage. Nuclear localization and cyclin/CDK-binding of p27Kip1 were critical to mediate proper response to DNA damage. In human luminal breast cancer (LBC) p27kip1 is frequently down-modulated and CDKN1B, p27Kip1 gene, sporadically mutated. We recapitulated results obtained in mouse fibroblasts in a LBC cell line genetically manipulated to be KO for CDKN1B gene. Following γ-irradiation, we confirmed that p27kip1 expression was necessary to preserve genomic integrity and to recognize and clear-out aberrant cells. Our study provides important insights into mechanisms underlying radio-resistance and unveils the possibility for novel treatment options exploiting DNA repair defects in LBC.


Physica Medica | 2015

Hypofractionation of partial breast irradiation using radiobiological models

M. Avanzo; Marco Trovo; Joseph Stancanello; R. Jena; Mario Roncadin; Giulia Toffoli; Chiara Zuiani; E. Capra

PURPOSE To reduce the fraction number in Partial Breast Irradiation (PBI) with initial prescription of 40 Gy in 10 fractions using radiobiological models with specific focus on risk of moderate/severe radiation-induced fibrosis (RIF) and report clinical results. METHODS AND MATERIALS 68 patients (patient group A) were treated with 40 Gy in 10 fractions delivered by field-in-field, forward-planned IMRT. Isotoxic regimens with decreasing number of fractions were calculated using Biological Effective Dose (BED) to the breast. Risk for RIF in hypofractionated treatment was predicted by calculating NTCP from DVHs of group A rescaled to fractions and dose of novel regimens. Moderate/severe RIF was prospectively scored during follow-up. Various NTCP models, with and without incomplete repair correction, were assessed from difference to observed incidence of RIF. In order to verify the value for α/β of 3 Gy assumed for breast, we fitted α/β to observed incidences of moderate/severe RIF. RESULTS Treatments with 35 Gy/7f and 28 Gy/4f were selected for the fraction reduction protocol. 75 patients (group B) were treated in 35 Gy/7f. Incidence of moderate/severe RIF was 5.9% in group A, 5.3% in group B. The NTCP model with correction for incomplete repair had lowest difference from observed RIF. The α/β obtained from fitting was 2.8 (95%CIs 1.1-10.7) Gy. CONCLUSIONS The hypofractionated regimen was well tolerated. The model for NTCP corrected for incomplete repair was the most accurate and an assumed α/β value of 3 Gy is consistent with our patient data. The hypofractionation protocol is continuing with patients treated with 28 Gy/4f.


Physica Medica | 2017

Voxel-by-voxel correlation between radiologically radiation induced lung injury and dose after image-guided, intensity modulated radiotherapy for lung tumors

M. Avanzo; S. Barbiero; Marco Trovo; Jean-Pierre Bissonnette; R. Jena; Joseph Stancanello; Giovanni Pirrone; Fabio Matrone; Emilio Minatel; Cristina Cappelletto; Carlo Furlan; David A. Jaffray; Giovanna Sartor

PURPOSE To correlate radiation dose to the risk of severe radiologically-evident radiation-induced lung injury (RRLI) using voxel-by-voxel analysis of the follow-up computed tomography (CT) of patients treated for lung cancer with hypofractionated helical Tomotherapy. METHODS AND MATERIALS The follow-up CT scans from 32 lung cancer patients treated with various regimens (5, 8, and 25 fractions) were registered to pre-treatment CT using deformable image registration (DIR). The change in density was calculated for each voxel within the combined lungs minus the planning target volume (PTV). Parameters of a Probit formula were derived by fitting the occurrences of changes of density in voxels greater than 0.361gcm-3 to the radiation dose. The models predictive capability was assessed using the area under receiver operating characteristic curve (AUC), the Kolmogorov-Smirnov test for goodness-of-fit, and the permutation test (Ptest). RESULTS The best-fit parameters for prediction of RRLI 6months post RT were D50 of 73.0 (95% CI 59.2.4-85.3.7)Gy, and m of 0.41 (0.39-0.46) for hypofractionated (5 and 8 fractions) and D50 of 96.8 (76.9-123.9)Gy, and m of 0.36 (0.34-0.39) for 25 fractions RT. According to the goodness-of-fit test the null hypothesis of modeled and observed occurrence of RRLI coming from the same distribution could not be rejected. The AUC was 0.581 (0.575-0.583) for fractionated and 0.579 (0.577-0.581) for hypofractionated patients. The predictive models had AUC>upper 95% band of the Ptest. CONCLUSIONS The correlation of voxel-by-voxel density increase with dose can be used as a support tool for differential diagnosis of tumor from benign changes in the follow-up of lung IMRT patients.


Frontiers in Immunology | 2017

Local high-dose radiotherapy induces systemic immunomodulating effects of potential therapeutic relevance in oligometastatic breast cancer

Elena Muraro; Carlo Furlan; M. Avanzo; Debora Martorelli; Elisa Comaro; Aurora Rizzo; Damiana Antonia Faè; Massimiliano Berretta; Loredana Militello; Alessandro Del Conte; Simon Spazzapan; Riccardo Dolcetti; Marco Trovo

Local irradiation of cancer through radiotherapy can induce spontaneous regression of non-directly irradiated lesions, suggesting the involvement of systemic antitumor immune responses. In oligometastatic breast cancer (BC) patients, the use of stereotactic body radiotherapy (SBRT) favors the local control of treated lesions and may contribute to break local tolerance and release tumor-associated antigens (TAAs), improving host antitumor immunity. We performed a detailed immunomonitoring of BC patients undergoing SBRT to verify its ability to “switch on” the anti-tumor immunity both systemically, in peripheral blood, and locally, employing in vitro BC models. Twenty-one BC patients with ≤6 metastases were treated with 3 daily doses of 10 Gy with SBRT. Blood samples for immune profiling were collected before and after treatment. One month after treatment a third of patients displayed the boosting or even the de novo appearance of polyfunctional CD4+ and CD8+ T cell responses against known BC TAAs (survivin, mammaglobin-A, HER2), through intracellular staining in flow cytometry. Half of patients showed increased numbers of activated natural killer (NK) cells, measured with multispectral flow cytometry, immediately after the first dose of SBRT. Interestingly, high levels of activated NK cells at diagnosis correlated with a longer progression-free survival. BC in vitro models, treated with the same SBRT modality, showed enhanced expression of MHC class-I and class-II, major histocompatibility complex class I-related chain A/B, and Fas molecules, and increased release of pro-inflammatory cytokines, such as IL-1β and TNF-α. Consistently, we noticed enhanced production of perforin by CD4+ T cells when patients’ lymphocytes were cultured in the presence of irradiated BC cell line, compared to untreated targets. Besides immunogenic effects, SBRT also enhanced the percentages of circulating regulatory T cells, and increased indoleamine 2,3 dioxygenase and PD-L1 expression in BC in vitro models. These results suggest that SBRT may boost host antitumor immune responses also in an advanced disease setting such as oligometastatic BC, by inducing immunomodulating effects both locally and systemically. However, the concomitant induction of immunosuppressive pathways suggests that a combination with immunotherapy could further enhance the in situ vaccination ability of radiotherapy, possibly further improving the curative potential of SBRT in this subset of patients.

Collaboration


Dive into the M. Avanzo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S Cora

University of Padua

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Jena

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tiziana Perin

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge